Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012:59:389-412.
doi: 10.1007/978-94-007-3015-1_13.

Defining signal transduction by inositol phosphates

Affiliations
Review

Defining signal transduction by inositol phosphates

Stephen B Shears et al. Subcell Biochem. 2012.

Abstract

Ins(1,4,5)P(3) is a classical intracellular messenger: stimulus-dependent changes in its levels elicits biological effects through its release of intracellular Ca(2+) stores. The Ins(1,4,5)P(3) response is "switched off" by its metabolism to a range of additional inositol phosphates. These metabolites have themselves come to be collectively described as a signaling "family". The validity of that latter definition is critically examined in this review. That is, we assess the strength of the hypothesis that Ins(1,4,5)P(3) metabolites are themselves "classical" signals. Put another way, what is the evidence that the biological function of a particular inositol phosphate depends upon stimulus dependent changes in its levels? In this assessment, examples of an inositol phosphate acting as a cofactor (i.e. its function is not stimulus-dependent) do not satisfy our signaling criteria. We conclude that Ins(3,4,5,6)P(4) is, to date, the only Ins(1,4,5)P(3) metabolite that has been validated to act as a second messenger.

PubMed Disclaimer

Figures

Fig. 13.1
Fig. 13.1
Inositol phosphate metabolism. The figure shows the pathway of Ins(1,4,5)P3 metabolism. The numbers in circles indicate the different enzymes that are involved: 1, IPK2/IPMK; 2, Ins(1,4,5)P3 3-kinases; 3, Ins(1,4,5)P3/ Ins(1,3,4,5)P4 5-phopshatase; 4, ITPK1; 5, PTEN; 6, IP5K. There is a candidate for the question mark—MIPP—but it is uncertain how that enzyme can access its substrate (see text for details). The inositol pyrophosphates are not shown in this figure (they are the subject of a separate chapter (Saiardi 2011)). The enzymes that dephosphorylate Ins(1,4,5)P3 and Ins(1,3,4)P3 to inositol are not shown, as this review is only concerned with metabolites that have received attention as being cellular signals. Note that the positional specificity of IPK2/IPMK shows phylogenetic variation. In yeasts, Ins(1,4,5)P3 is phosphorylated primarily to Ins(1,4,5,6)P4, in mammals the product is predominantly Ins(1,3,4,5)P4, and the enzyme in flies produces roughly equal quantities of both InsP4 isomers
Fig. 13.2
Fig. 13.2
The phosphotransferase activity of ITPK1. The figure shows the phosphotransferase activity that is catalyzed by ITPK1. The phosphate group that is transferred between from Ins(1,3,4,5,6)P5 to Ins(1,3,4)P3 is highlighted in by the grey circle

Similar articles

Cited by

References

    1. Alcázar-Román AR, Tran EJ, Guo S, Wente SR. Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nat Cell Biol. 2006;8:645–647. - PubMed
    1. Ali N, Craxton A, Shears SB. Hepatic Ins(1,3,4,5)P4 3-phosphatase is compartmentalized inside endoplasmic reticulum. J Biol Chem. 1993;268:6161–6167. - PubMed
    1. Balla T, Guillemette G, Baukal AJ, Catt KJ. Formation of inositol 1,3,4,6-tetrakisphosphate during angiotensin II action in bovine adrenal glomerulosa cells. Biochem Biophys Res Commun. 1987;146:199–205. - PubMed
    1. Barg S, Huang P, Eliasson L, Nelson DJ, Obermüller S, Rorsman P, Thévenod F, Renström E. Priming of insulin granules for exocytosis by granular chloride uptake and acidification. J Cell Sci. 2001;114:2145–2154. - PubMed
    1. Barker CJ, Wong NS, Maccallum SM, Hunt PA, Michell RH, Kirk CJ. The interrelationships of the inositol phosphates formed in WRK-1 stimulated rat mammary tumour cells. Biochem J. 1992;286:469–474. - PMC - PubMed

MeSH terms

Substances

LinkOut - more resources