Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2012 Jan;95(1):29-36.

Vitamin E supplement improves erythrocyte membrane fluidity of thalassemia: an ESR spin labeling study

Affiliations
  • PMID: 22379738
Randomized Controlled Trial

Vitamin E supplement improves erythrocyte membrane fluidity of thalassemia: an ESR spin labeling study

Werasak Sutipornpalangkul et al. J Med Assoc Thai. 2012 Jan.

Abstract

Background: Beta-thalassemia/Hemoglobin E (beta-thal/Hb E) is prevalent in Thailand. The imbalance of globin chains in red blood cells is the primary cause of this anemic disease. The excess alpha-globin in beta-thal/Hb E causes typical damage(s) to membrane of erythroblasts and erythrocytes. By using three paramagnetic labeled compounds (5-, 12-, and 16-spin labeled stearic acids, SLS), the changes of the molecular motion in the lipid bilayer of thalassemic RBCs that have structural modification can be detected.

Objective: to investigate erythrocyte membrane fluidity and the effect of vitamin E treatment in beta-thalassemia/Hemoglobin E patients by using spin labeling techniques.

Material and method: The erythrocyte membrane fluidity was investigated in nine splenectomized and five non-splenectomized beta-thalassemia/hemoglobin E (beta-thal/Hb E) patients using EPR spin labeling techniques. To determine the effect of vitamin E on erythrocyte membrane fluidity, only the splenectomized patients were enrolled. Patients were divided into two groups. The first group received 350 mg vitamin E daily for a period of 1 month (n = 5) and the second group received placebo for an equal period (n = 4). Three paramagnetic fatty acid, 5-, 12-, and 16-doxyl stearic acids, (5-, 12- and 16-DS) were used to label phospholipids layer near both the surface (5-DS) and the deeper hydrophobic region of membrane (12-and 16-DS). Lipid peroxidation (TBARs) was measured using a colorimetric method. Vitamin E was measured with high performance liquid chromatography (HPLC).

Results: Significantly higher values of erythrocyte membrane fluidity were revealed with 12-, 16-DS in splenectomized patients, as compared with non-splenectomized patients and normal subjects. In 3-thal/Hb E patients, fluidity values, both outer hyperfine splitting (2T(//)) and order parameter (S) of 12-DS showed inverse correlation with serum TBARs. There was no significant difference between the fluidity values measured with 5-DS. After vitamin E supplementation, the erythrocyte membrane fluidity was decreased in almost all patients. In contrast to the vitamin E supplementation group, increased erythrocyte membrane fluidity was demonstrated in the placebo group. Vitamin E supplementation also had effect on other clinical parameters such as increased plasma vitamin E, decreased serum TBARs and no change in hemoglobin.

Conclusion: The present results suggested the abnormal motion of lipid in the deeper phospholipids region of membrane. In addition, vitamin E supplementation may have a role in the prevention of erythrocyte membrane damage of these patients.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources