Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Mar 20;84(6):2930-8.
doi: 10.1021/ac3000144. Epub 2012 Feb 29.

Assessment of cellular oxygen gradients with a panel of phosphorescent oxygen-sensitive probes

Affiliations

Assessment of cellular oxygen gradients with a panel of phosphorescent oxygen-sensitive probes

Ruslan I Dmitriev et al. Anal Chem. .

Abstract

The supply of oxygen (O(2)) to respiring tissue, cells, and mitochondria regulates metabolism, gene expression, and cell fate. Depending on the cell type and mitochondrial function, O(2) gradients between extra- and intracellular compartments may vary and play important physiological roles such as the regulation of activity of prolyl hydroxylases and adaptive responses to hypoxia. Here we present a new methodology for the analysis of localized O(2) gradients in cultures of adherent cells, using three phosphorescent Pt-porphyrin based probes with different localization. One new O(2) probe targeted to the cell membrane was developed and used together with existing MitoXpress and Nano2 probes to monitor mean pericellular (PC), extracellular (EC), and intracellular (IC) O(2) concentrations, respectively. Mouse fibroblasts and neuronal PC12 cells cultured in standard microplates were stained with probes and measured on a commercial time-resolved fluorescence reader in phosphorescence lifetime mode. Respiring cells exposed to various levels of atmospheric O(2) showed differences in oxygenation of their IC, PC, and EC compartments. Experiments with different cell numbers and modulation of respiration activity demonstrated that these gradients are dynamic and regulated by the O(2) diffusion and consumption rate. The new method facilitates the assessment of such gradients.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources