Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jan;39(1):40-7.
doi: 10.1017/s031716710001266x.

Essential role of excessive tryptophan and its neurometabolites in fatigue

Affiliations

Essential role of excessive tryptophan and its neurometabolites in fatigue

Takanobu Yamamoto et al. Can J Neurol Sci. 2012 Jan.

Abstract

Purpose: Serotonin, a neurotransmitter synthesized from tryptophan, has been proposed to play a key role in central fatigue. In this study, we examined whether tryptophan itself and/or its two metabolites, kyneurenic acid (KYNA) and quinolinic acid (QUIN), are involved in central fatigue.

Materials and methods: Experiments were conducted using Sprague-Dawley rats (SDR) and Nagase analbuminemic rats (NAR). Central fatigue was assessed by treadmill running and a Morris water maze test. Microdialysis was used to collect samples for measurement of extracellular concentration of tryptophan, serotonin and 5-hydroxyindoleacetic acid (5-HIAA) and to infuse test agents. To examine the kinetics of release, synaptosomes in the striatum were prepared in vitro to measure intra- and extrasynaptosomal concentration of tryptophan, serotonin and 5-HIAA.

Results: The concentration of tryptophan secreted into the extracellular space of the striatum was higher during fatigue only, and quickly returned to basal levels with recovery from fatigue. Running time to exhaustion was reduced by activation of tryptophan receptors. Time to exhaustion was shorter in NAR, which maintain a higher extracellular level of striatum tryptophan than SDR. Impaired memory performance in a water maze task after tryptophan treatment was attributable to high levels of KYNA and QUIN in the hippocampus acting synergistically on N-methyl-D-aspartic acid receptors. When branched-chain amino acids were administered, tryptophan transport to the extracellular space of the striatum was drastically inhibited.

Conclusion: Our findings demonstrate that the increase in fatigue which occurs because of excessively elevated brain tryptophan can be further amplified by the use of synthetic KYNA and QUIN.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources