Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Mar;7(3):411-28.
doi: 10.2217/nnm.12.9.

Tapping the potential of quantum dots for personalized oncology: current status and future perspectives

Affiliations
Review

Tapping the potential of quantum dots for personalized oncology: current status and future perspectives

Chuang Chen et al. Nanomedicine (Lond). 2012 Mar.

Abstract

Cancer is one of the most serious health threats worldwide. Personalized oncology holds potential for future cancer care in clinical practice, where each patient could be delivered individualized medicine on the basis of key biological features of an individual tumor. One of the most urgent problems is to develop novel approaches that incorporate the increasing molecular information into the understanding of cancer biological behaviors for personalized oncology. Quantum dots are a heterogeneous class of engineered fluorescent nanoparticles with unique optical and chemical properties, which make them promising platforms for biomedical applications. With the unique optical properties, the utilization of quantum dot-based nanotechnology has been expanded into a wide variety of attractive biomedical applications for cancer diagnosis, monitoring, pathogenesis, treatment, molecular pathology and heterogeneity in combination with cancer biomarkers. Here, we focus on the clinical application of quantum dot-based nanotechnology in personalized oncology, covering topics on individualized cancer diagnosis and treatment by in vitro and in vivo molecular imaging technologies, and in-depth understanding of the biological behaviors of tumors from a nanotechnology perspective. In addition, the major challenges in translating quantum dot-based nanotechnology into clinical application and promising future directions in personalized oncology are also discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources