Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2012 Oct;36(7):488-95.
doi: 10.1016/j.medin.2012.01.003. Epub 2012 Mar 3.

[Prolonged mechanical ventilation probability model]

[Article in Spanish]
Affiliations
Free article
Multicenter Study

[Prolonged mechanical ventilation probability model]

[Article in Spanish]
J M Añón et al. Med Intensiva. 2012 Oct.
Free article

Abstract

Objective: To design a probability model for prolonged mechanical ventilation (PMV) using variables obtained during the first 24 hours of the start of MV.

Design: An observational, prospective, multicenter cohort study.

Scope: Thirteen Spanish medical-surgical intensive care units.

Patients: Adult patients requiring mechanical ventilation for more than 24 hours.

Interventions: None.

Study variables: APACHE II, SOFA, demographic data, clinical data, reason for mechanical ventilation, comorbidity, and functional condition. A multivariate risk model was constructed. The model contemplated a dependent variable with three possible conditions: 1. Early mortality; 2. Early extubation; and 3. PMV.

Results: Of the 1661 included patients, 67.9% (n=1127) were men. Age: 62.1±16.2 years. APACHE II: 20.3±7.5. Total SOFA: 8.4±3.5. The APACHE II and SOFA scores were higher in patients ventilated for 7 or more days (p=0.04 and p=0.0001, respectively). Noninvasive ventilation failure was related to PMV (p=0.005). A multivariate model for the three above exposed outcomes was generated. The overall accuracy of the model in the training and validation sample was 0.763 (95%IC: 0.729-0.804) and 0.751 (95%IC: 0.672-0.816), respectively. The likelihood ratios (LRs) for early extubation, involving a cutoff point of 0.65, in the training sample were LR (+): 2.37 (95%CI: 1.77-3.19) and LR (-): 0.47 (95%CI: 0.41-0.55). The LRs for the early mortality model, for a cutoff point of 0.73, in the training sample, were LR (+): 2.64 (95%CI: 2.01-3.4) and LR (-): 0.39 (95%CI: 0.30-0.51).

Conclusions: The proposed model could be a helpful tool in decision making. However, because of its moderate accuracy, it should be considered as a first approach, and the results should be corroborated by further studies involving larger samples and the use of standardized criteria.

PubMed Disclaimer

LinkOut - more resources