Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 May;4(5):461-70.
doi: 10.1039/c2ib00176d. Epub 2012 Mar 5.

Organs-on-chips: breaking the in vitro impasse

Affiliations
Review

Organs-on-chips: breaking the in vitro impasse

Andries D van der Meer et al. Integr Biol (Camb). 2012 May.

Abstract

In vitro models of biological tissues are indispensable tools for unraveling human physiology and pathogenesis. They usually consist of a single layer of a single cell type, which makes them robust and suitable for parallelized research. However, due to their simplicity, in vitro models are also less valid as true reflections of the complex biological tissues of the human body. Even though the realism of the models can be increased by including more cell types, this will inevitably lead to a decrease in robustness and throughput. The constant trade-off between realism and simplicity has led to an impasse in the development of new in vitro models. Organs-on-chips, a class of microengineered in vitro tissue models, have the potential to break the in vitro impasse. These models combine an artificially engineered, physiologically realistic cell culture microenvironment with the potential for parallelization and increased throughput. They are robust, because the engineered physiological, organ-level features such as tissue organization, geometry, soluble gradients and mechanical stimulation are well-defined and controlled. Moreover, their microfluidic properties and integrated sensors pave the way for high-throughput studies. In this review, we define the in vitro impasse, we explain why organs-on-chips have the potential to break the impasse and we formulate a view on the future of the field. We focus on the design philosophy of organs-on-chips, the integration of technology and biology and on how to connect to the potential end-users.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources