Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Aug;66(8):667-76.
doi: 10.1002/syn.21553. Epub 2012 Mar 27.

Quantitative hippocampal structural changes following electroconvulsive seizure treatment in a rat model of depression

Affiliations

Quantitative hippocampal structural changes following electroconvulsive seizure treatment in a rat model of depression

Susanne S Kaae et al. Synapse. 2012 Aug.

Abstract

Objective: The pathophysiology of depression and the effects of antidepressant treatment are hypothesized to be related to hippocampal structural changes. This study aims to investigate the effect of electroconvulsive seizures on behavior and hippocampal structure in a rat model of depression.

Methods: Flinders Sensitive Line (FSL) and Flinders Resistant Line (FRL) rats were treated daily for 10 days with either electroconvulsive seizures or sham treatment. The behavior was evaluated using the forced swim test. Design-based stereological methods were used to quantify the hippocampal volume and the numbers of neurons and glial cells in specific hippocampal subregions.

Results: The basal level of hippocampal volume and neuron number differed significantly between the two rat strains, and a trend toward the FSL strain having more glial cells was found. The structural differences found between the sham-treated animals were counteracted by electroconvulsive seizure (ECS) treatment, which also normalized the behavior. ECS treatment increased the number of glial cells in hilus significantly in the FRL rats and with the same tendency for the FSL rats.

Conclusion: Our results indicate that along with hippocampal neurogenesis, gliogenesis may also be involved in the pathophysiology of depression and in the effect of antidepressant treatment. The underlying mechanisms remain unknown, and further investigations are required to clarify whether the structural changes are necessary to induce a therapeutic effect of antidepressant treatment or if they rather represent an epiphenomenon.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources