Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 May;63(8):3257-70.
doi: 10.1093/jxb/ers056. Epub 2012 Mar 2.

Roles for a soybean RAV-like orthologue in shoot regeneration and photoperiodicity inferred from transgenic plants

Affiliations

Roles for a soybean RAV-like orthologue in shoot regeneration and photoperiodicity inferred from transgenic plants

Lin Zhao et al. J Exp Bot. 2012 May.

Abstract

The soybean gene Glyma10g34760 appears to encode a RAV2-like transcription factor orthologue (DQ147914; hereafter GmRAV) based on sequence similarity. The gene is a member of the ERF/AP2 transcription factor family that has been shown to be increased in transcript abundance by cytokinins (CKs). Transgenic GmRAV-overexpressing (-ox) tobacco plants exhibited increased CK signalling-related phenotypes including dwarfism, reduced apical dominance, extreme longevity, vigorous outgrowth of lateral buds, small and dark green leaves, reduced root growth, repressed flowering under both long- and short-day conditions, and altered sensitivity to daylength. In contrast, inhibition (-i) of GmRAV in soybean displayed the opposite phenotypic alterations which were consistent with defects in CK signalling. Phenotypes included earlier time of emergence; reduced numbers of branches, leaves, and flower buds; increased plant height; increased apical dominance; and earlier flowering and maturity. GmRAV-i soybean was less sensitive to cytokinin in hypocotyls and root growth inhibition assays. GmRAV-i soybean showed decreased frequency of adventious shoot formation in tissue culture in the presence of CKs, which might be attributed to the significantly decreased activities of CUC2, STM, and WUS involved in shoot meristem specification. GmRAV protein was localized in the nucleus in leaves. The GmRAV promoter-β-glucuronidase (GUS) fusion was largely expressed in a meristematic region of the shoot apex, which was consistent with expressed sequence tag and microarray data. GmRAV was inferred to play a key role in CK and photoperiod signalling that subsequently regulated plant development.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms