Magnetite Nanoparticles for Medical MR Imaging
- PMID: 22389583
- PMCID: PMC3290401
- DOI: 10.1016/S1369-7021(11)70163-8
Magnetite Nanoparticles for Medical MR Imaging
Abstract
Nanotechnology has given scientists new tools for the development of advanced materials for the detection and diagnosis of disease. Iron oxide nanoparticles (SPIONs) in particular have been extensively investigated as novel magnetic resonance imaging (MRI) contrast agents due to a combination of favorable superparamagnetic properties, biodegradability, and surface properties of easy modification for improved in vivo kinetics and multifunctionality. This review discusses the basics of MR imaging, the origin of SPION's unique magnetic properties, recent developments in MRI acquisition methods for detection of SPIONs, synthesis and post-synthesis processes that improve SPION's imaging characteristics, and an outlook on the translational potential of SPIONs.
Figures







Similar articles
-
Co-precipitation of DEAE-dextran coated SPIONs: how synthesis conditions affect particle properties, stem cell labelling and MR contrast.Contrast Media Mol Imaging. 2016 Sep;11(5):362-370. doi: 10.1002/cmmi.1700. Epub 2016 Jun 30. Contrast Media Mol Imaging. 2016. PMID: 27358113
-
Superparamagnetic Iron Oxide Nanoparticles-Current and Prospective Medical Applications.Materials (Basel). 2019 Feb 19;12(4):617. doi: 10.3390/ma12040617. Materials (Basel). 2019. PMID: 30791358 Free PMC article. Review.
-
Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics.Int J Pharm. 2015 Dec 30;496(2):191-218. doi: 10.1016/j.ijpharm.2015.10.058. Epub 2015 Oct 28. Int J Pharm. 2015. PMID: 26520409 Review.
-
Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy.Artif Cells Nanomed Biotechnol. 2017 Feb;45(1):6-17. doi: 10.3109/21691401.2016.1167704. Epub 2016 Apr 6. Artif Cells Nanomed Biotechnol. 2017. PMID: 27050642 Review.
-
Effect of surface coating on the biocompatibility and in vivo MRI detection of iron oxide nanoparticles after intrapulmonary administration.Nanotoxicology. 2015;9(7):825-34. doi: 10.3109/17435390.2014.980450. Epub 2015 Sep 10. Nanotoxicology. 2015. PMID: 26356541
Cited by
-
A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro.Phys Med Biol. 2015 Jan 21;60(2):769-84. doi: 10.1088/0031-9155/60/2/769. Epub 2015 Jan 5. Phys Med Biol. 2015. PMID: 25559398 Free PMC article.
-
Cancer treatment by magneto-mechanical effect of particles, a review.Nanoscale Adv. 2020 Jun 19;2(9):3632-3655. doi: 10.1039/d0na00187b. eCollection 2020 Sep 16. Nanoscale Adv. 2020. PMID: 36132753 Free PMC article. Review.
-
Targeting Selectins Mediated Biological Activities With Multivalent Probes.Front Chem. 2021 Dec 3;9:773027. doi: 10.3389/fchem.2021.773027. eCollection 2021. Front Chem. 2021. PMID: 34926401 Free PMC article. Review.
-
Approach to Rapid Synthesis and Functionalization of Iron Oxide Nanoparticles for High Gene Transfection.ACS Appl Mater Interfaces. 2016 Mar;8(10):6320-8. doi: 10.1021/acsami.5b10883. Epub 2016 Mar 4. ACS Appl Mater Interfaces. 2016. PMID: 26894609 Free PMC article.
-
Nanotheranostic Strategies for Cancer Immunotherapy.Small Methods. 2022 Dec;6(12):e2200718. doi: 10.1002/smtd.202200718. Epub 2022 Nov 16. Small Methods. 2022. PMID: 36382571 Free PMC article. Review.
References
-
- Edelman RD, et al. MRI: Clinical Magnetic Resonance Imaging. 2 ed W. B. Saunders Company; Philadelphia, Pennsylvania: 1996. p. 1150.
-
- Ferrari M. Nat Rev Cancer. 2005;5(3):161. - PubMed
-
- Wickline SA, et al. Journal of Magnetic Resonance Imaging. 2007;25(4):667. - PubMed
-
- Corot C, et al. Invest. Radiol. 2004;39(10):619. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical