Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Jul;11(3):347-52.
doi: 10.1016/j.arr.2012.01.007. Epub 2012 Feb 23.

Evolutionary aspects of human exercise--born to run purposefully

Affiliations
Review

Evolutionary aspects of human exercise--born to run purposefully

Mark P Mattson. Ageing Res Rev. 2012 Jul.

Abstract

This article is intended to raise awareness of the adaptive value of endurance exercise (particularly running) in the evolutionary history of humans, and the implications of the genetic disposition to exercise for the aging populations of modern technology-driven societies. The genome of Homo sapiens has evolved to support the svelte phenotype of an endurance runner, setting him/her apart from all other primates. The cellular and molecular mechanisms underlying the competitive advantages conferred by exercise capacity in youth can also provide a survival benefit beyond the reproductive period. These mechanisms include up-regulation of genes encoding proteins involved in protecting cells against oxidative stress, disposing of damaged proteins and organelles, and enhancing bioenergetics. Particularly fascinating are the signaling mechanisms by which endurance running changes the structure and functional capabilities of the brain and, conversely, the mechanisms by which the brain integrates metabolic, cardiovascular and behavioral responses to exercise. As an emerging example, I highlight the roles of brain-derived neurotrophic factor (BDNF) as a mediator of the effects of exercise on the brain, and BDNF's critical role in regulating metabolic and cardiovascular responses to endurance running. A better understanding of such 'healthspan-extending' actions of endurance exercise may lead to new approaches for improving quality of life as we advance in the coming decades and centuries.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Adaptions of humans for endurance running.
Figure 2
Figure 2
Brain-derived neurotrophic factor (BDNF) is an integrator of adaptive responses of the brain and body to endurance running.

References

    1. Bramble DM, Lieberman DE. Endurance running and the evolution of Homo. Nature. 2004;432:345–352. - PubMed
    1. Bull ND, Bartlett PF. The adult mouse hippocampal progenitor is neurogenic but not a stem cell. J Neurosci. 2005;25:10815–10821. - PMC - PubMed
    1. Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM, Borak J, Cai L, Cedergreen N, Cherian MG, Chiueh CC, Clarkson TW, Cook RR, Diamond DM, Doolittle DJ, Dorato MA, Duke SO, Feinendegen L, Gardner DE, Hart RW, Hastings KL, Hayes AW, Hoffmann GR, Ives JA, Jaworowski Z, Johnson TE, Jonas WB, Kaminski NE, Keller JG, Klaunig JE, Knudsen TB, Kozumbo WJ, Lettieri T, Liu SZ, Maisseu A, Maynard KI, Masoro EJ, McClellan RO, Mehendale HM, Mothersill C, Newlin DB, Nigg HN, Oehme FW, Phalen RF, Philbert MA, Rattan SI, Riviere JE, Rodricks J, Sapolsky RM, Scott BR, Seymour C, Sinclair DA, Smith-Sonneborn J, Snow ET, Spear L, Stevenson DE, Thomas Y, Tubiana M, Williams GM, Mattson MP. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol Appl Pharmacol. 2007;222:122–128. - PubMed
    1. Cao L, Choi EY, Liu X, Martin A, Wang C, Xu X, During MJ. White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab. 2011;14:324–338. - PMC - PubMed
    1. Chen MJ, Russo-Neustadt AA. Running exercise-induced up-regulation of hippocampal brain-derived neurotrophic factor is CREB-dependent. Hippocampus. 2009;19:962–972. - PMC - PubMed

Substances