Genistein prevents hyperglycemia-induced monocyte adhesion to human aortic endothelial cells through preservation of the cAMP signaling pathway and ameliorates vascular inflammation in obese diabetic mice
- PMID: 22399524
- PMCID: PMC3301991
- DOI: 10.3945/jn.111.152322
Genistein prevents hyperglycemia-induced monocyte adhesion to human aortic endothelial cells through preservation of the cAMP signaling pathway and ameliorates vascular inflammation in obese diabetic mice
Abstract
Hyperglycemia-induced vascular inflammation resulting in the enhanced monocyte-endothelial cell (EC) interaction is the key event in the pathogenesis of atherosclerosis in diabetes. Here, we investigated the effect of isoflavone genistein on hyperglycemia-stimulated vascular inflammation. Human aortic EC (HAEC) were pretreated with genistein before the addition of high glucose (HG; 25 mmol/L) for 48 h. Genistein at a physiological concentration (0.1 μmol/L) significantly inhibited HG-induced adhesion of monocytes to HAEC and suppressed endothelial production of monocyte chemotactic protein-1 (MCP-1) and IL-8. Inhibition of adenylate cyclase or protein kinase A (PKA) significantly attenuated the antiadhesion effect of genistein. Consistently, genistein improved HG-impaired intracellular cAMP production and PKA activity in HAEC. Six-week-old diabetic db/db mice were untreated (db/db) or treated with a diet containing 1 g genistein/kg diet (db/db+G) for 8 wk. Their nondiabetic db/+ mice were used as normal controls. Circulating concentrations of MCP-1/JE and KC were significantly greater, whereas IL-10 concentrations were lower in db/db mice than those in normal mice. Dietary supplementation of genistein did not normalize but significantly suppressed the elevated serum concentrations of MCP-1/JE from 286 ± 30 ng/L to 181 ± 35 ng/L and KC from 321 ± 21 ng/L to 232 ± 20 ng/L while increasing that of IL-10 from 35 ± 4 ng/L to 346 ± 35 ng/L in db/db+G mice. Further, genistein treatment suppressed diabetes-induced adhesion of monocytes to EC by 87% and endothelial secretion of adhesion molecules. We conclude that genistein improves diabetes-caused vascular inflammation, which may be mediated through promoting the cAMP/PKA pathway.
Conflict of interest statement
Author disclosures: P. V. A. Babu, H. Si, Z. Fu, W. Zhen, and D. Liu, no conflicts of interest.
Figures
References
-
- Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287:2570–81 - PubMed
-
- Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med. 1999;340:115–26 - PubMed
-
- Potenza MA, Gagliardi S, Nacci C, Carratu MR, Montagnani M. Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. Curr Med Chem. 2009;16:94–112 - PubMed
-
- Srinivasan S, Bolick DT, Hatley ME, Natarajan R, Reilly KB, Yeh M, Chrestensen C, Sturgill TW, Hedrick CC. Glucose regulates interleukin-8 production in aortic endothelial cells through activation of the p38 mitogen-activated protein kinase pathway in diabetes. J Biol Chem. 2004;279:31930–6 - PubMed
-
- Kunt T, Forst T, Fruh B, Flohr T, Schneider S, Harzer O, Pfutzner A, Engelbach M, Lobig M, Beyer J. Binding of monocytes from normolipidemic hyperglycemic patients with type 1 diabetes to endothelial cells is increased in vitro. Exp Clin Endocrinol Diabetes. 1999;107:252–6 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
