Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Nov;259(5 Pt 1):G786-91.
doi: 10.1152/ajpgi.1990.259.5.G786.

Water and ion handling in the rat cecum

Affiliations

Water and ion handling in the rat cecum

E Escobar et al. Am J Physiol. 1990 Nov.

Abstract

The minute-by-minute net water movement (Jw) in the rat cecum was correlated with the transepithelial potential difference (PD), short-circuit current (Isc), and the unidirectional Na+, Cl-, and Rb+ fluxes, with the following results. 1) Jw was a linear function of the applied hydrostatic or osmotic transepithelial gradients (hydrostatic permeability coefficiency = 0.164 +/- 0.018 cm/s, n = 13; osmotic permeability coefficient = 0.0014 +/- 0.0002 cm/s, n = 6). 2) A fraction of this absorptive Jw (0.17 +/- 0.03 microliter.min-1.cm-2, n = 13) was independent of the presence of any osmotic, hydrostatic, or chemical gradient. 3) This fraction was Na+ dependent, associated with an amiloride-insensitive PD and net Na+ (2.37 +/- 0.68 mu eq.h-1.cm-2, n = 6) and Cl- influxes (3.45 +/- 1.46 mu eq.h-1.cm-2, n = 6), measured under short-circuit conditions. No net Rb+ movement was detected. 4) The absorptive Jw increased when HCO3- was replaced by tris(hydroxymethyl)aminomethane (Tris+) buffer or Cl- by SO4(2-). A good agreement between the observed and the expected Jw (assuming isosmotic reabsorption) was observed in the absence of HCO3-. 5) The presence of an osmotic but not a hydrostatic transepithelial gradient generated a transepithelial PD. These results show that water movement across the rat cecum in vitro is the result of a combination of hydrostatic-, osmotic-, and transport-associated transfers. Concerning this last driving force, the observed results indicate that the transport-related Jw results from the addition of an absorptive Jw, coupled to a nonelectrogenic NaCl entry, plus a secretory Jw probably coupled to HCO3- secretion.

PubMed Disclaimer

Publication types

LinkOut - more resources