Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Sep;14(5):706-13.
doi: 10.1111/j.1438-8677.2011.00560.x. Epub 2012 Mar 8.

Isolation and characterisation of Chrysanthemum crassum SOS1, encoding a putative plasma membrane Na(+) /H(+) antiporter

Affiliations

Isolation and characterisation of Chrysanthemum crassum SOS1, encoding a putative plasma membrane Na(+) /H(+) antiporter

A Song et al. Plant Biol (Stuttg). 2012 Sep.

Abstract

A full-length cDNA homologue of SOS1 (salt overly sensitive 1) was isolated from the salinity-tolerant species Chrysanthemum crassum and found to encode a Na(+) /H(+) antiporter, using degenerate PCR and RACE-PCR. The 3752-bp sequence comprised a 3438 bp open reading frame, encoding a 127-kDa protein with 12 transmembrane domains within its N terminal portion, and a hydrophilic cytoplasmic tail in its C-terminal portion. CcSOS1 appears to be a plasma membrane protein, and shares ∼62% identity at the peptide level with its Arabidopsis thaliana homologue. Expression of CcSOS1 in the roots of C. crassum was sensitive to salinity stress, while in the leaves CcSOS1 was down-regulated in the presence of abscisic acid. CcSOS1 transcript abundance was reduced in both roots and leaves of plants exposed to low temperature, while it was increased in leaves (but not in roots) after drought stress. CcSOS1 expression was not regulated in the presence of CaCl2 . A heterologous complementation assay in yeast suggested that CcSOS1 directs Na(+) efflux, mimicking the function of the endogenous NHA1 protein. Thus CcSOS1 appears to encode a salinity-inducible plasma membrane Na(+) /H(+) antiporter. This gene may be useful in transgenic approaches to improving the salinity tolerance of related ornamental species.

Keywords: Chrysanthemum crissum; SOS1; plasma membrane Na+/H+ antiporter; salt tolerance.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources