Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Mar 9;14(2):R54.
doi: 10.1186/ar3767.

The anti-CD74 humanized monoclonal antibody, milatuzumab, which targets the invariant chain of MHC II complexes, alters B-cell proliferation, migration, and adhesion molecule expression

Affiliations

The anti-CD74 humanized monoclonal antibody, milatuzumab, which targets the invariant chain of MHC II complexes, alters B-cell proliferation, migration, and adhesion molecule expression

Daniela Frölich et al. Arthritis Res Ther. .

Abstract

Introduction: Targeting CD74 as the invariant chain of major histocompatibility complexes (MHC) became possible by the availability of a specific humanized monoclonal antibody, milatuzumab, which is under investigation in patients with hematological neoplasms. CD74 has been reported to regulate chemo-attractant migration of macrophages and dendritic cells, while the role of CD74 on peripheral naïve and memory B cells also expressing CD74 remains unknown. Therefore, the current study addressed the influence of milatuzumab on B-cell proliferation, chemo-attractant migration, and adhesion molecule expression.

Methods: Surface expression of CD74 on CD27- naïve and CD27+ memory B cells as well as other peripheral blood mononuclear cells (PBMCs) obtained from normals, including the co-expression of CD44, CXCR4, and the adhesion molecules CD62L, β7-integrin, β1-integrin and CD9 were studied after binding of milatuzumab using multicolor flow cytometry. The influence of the antibody on B-cell proliferation and migration was analyzed in vitro in detail.

Results: In addition to monocytes, milatuzumab also specifically bound to human peripheral B cells, with a higher intensity on CD27+ memory versus CD27- naïve B cells. The antibody reduced B-cell proliferation significantly but moderately, induced enhanced spontaneous and CXCL12-dependent migration together with changes in the expression of adhesion molecules, CD44, β7-integrin and CD62L, mainly of CD27- naïve B cells. This was independent of macrophage migration-inhibitory factor as a ligand of CD74/CD44 complexes.

Conclusions: Milatuzumab leads to modestly reduced proliferation, alterations in migration, and adhesion molecule expression preferentially of CD27- naïve B cells. It thus may be a candidate antibody for the autoimmune disease therapy by modifying B cell functions.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Surface expression of CD74, CD44, and CXCR4 on T cells, monocytes, and B cells. (A) Detection of CD74 with a commercially available FITC-labeled anti-CD74 antibody (n = 8) and PE-labeled milatuzumab (n = 9) on T cells, monocytes, and B cells. For each staining, representative histograms, including an isotype control or blocking experiment, are shown. Competitive blocking experiments were performed by using unlabeled milatuzumab (20-fold concentration). Significant differences were observed between the CD74 expression levels of T cells, monocytes, and B cells (Wilcoxon test), and specificity of the staining was confirmed. (B) Detection of CD74 (n = 10), CD44 (n = 8), and CXCR4 (n = 12) on CD27- naïve and CD27+ memory B cells. These surface molecules showed a distinct expression profile between these B-cell subpopulations (Wilcoxon test). **P ≤ 0.01; ***P ≤ 0.001. BD, BD Biosciences; FITC, fluorescein isothiocyanate; MFI, (geometric) mean fluorescence intensity; PE, phycoerythrin.
Figure 2
Figure 2
Effects on proliferation of CD19+ B cells and macrophage migration inhibitory factor (MIF) concentration in vitro by milatuzumab. (A) Frequency of proliferated CD19+/CD3 -/CD14- B cells according to their carboxyfluorescein succinimidyl ester (CFSE) fluorescence intensity. CFSE-labeled peripheral blood mononuclear cells were cultured for 7 days with or without milatuzumab or intravenous immunoglobulin (IVIG) at 37°C in 5% CO2 and simultaneously stimulated with IL-2, IL-10, F(ab)2, and CpG (n = 6). Addition of milatuzumab as well as IVIG resulted in a modest, but significant, inhibition of the proliferation (Wilcoxon test). For each condition, a representative histogram is shown. (B) The concentration of the chemokine MIF as a potential ligand of CD74 was tested in cell culture supernatants (n = 7), as described above, and showed no significant differences between the conditions (Wilcoxon test). (C) Proportion of dead CD19+ B cells, identified as high positive staining with DAPI (n = 3). There was no substantial influence observed by either IVIG or milatuzumab (Wilcoxon test). *P ≤ 0.05. CpG, cytosine-phosphatidyl-guanosine; DAPI, 4,6 diamidino-2-phenylindole; F(ab)2, protein of two antigen-binding fragments; IL, interleukin; ns, not significant.
Figure 3
Figure 3
Influence of milatuzumab on the migration characteristics of CD19+ B cells and subsets in vitro. (A) Spontaneous baseline migration of B cells in a transwell migration assay. Peripheral blood mononuclear cells were incubated for 90 minutes at 37°C in 5% CO2 with or without milatuzumab (n = 8) or IgG1/IVIG (n = 6) and allowed to migrate without any chemokine added. Percentages of migrated cells are shown. Migration was significantly enhanced (Wilcoxon test) by milatuzumab in CD19+ B cells, especially in CD27- naïve B cells. (B) Effective CXCL12-dependent net migration determined for each individual by subtraction of the baseline migration - see (A) - from the total migration toward CXCL12 (not shown). A significant enhancement of the migration of CD19+ B cells, especially of CD27- B cells by milatuzumab, was identified (Wilcoxon test). In control experiments, IgG1/IVIG had no influence on migration. *P ≤ 0.05; **P ≤ 0.01. CXCL, CXC motif ligand; IVIG, intravenous immunoglobulin; ns, not significant.
Figure 4
Figure 4
Surface expression of CD44, β7-integrin, and CD62L on CD19+ B cells was preferentially reduced by milatuzumab on CD27- naïve B cells. (A) Surface expression of CD44 after incubation of peripheral blood mononuclear cells for 90 minutes at 37°C in 5% CO2 with or without milatuzumab (n = 7) or IgG1/IVIG (n = 7). Milatuzumab led to a significant reduction of the expression of CD44 on CD19+ B cells, especially on CD27- naïve B cells (Wilcoxon test). (B) Expression of β7-integrin was significantly reduced (Wilcoxon test) on CD19+ B cells, mainly confined to CD27- naïve B cells after milatuzumab incubation (n = 8), but not influenced by IgG1/IVIG (n = 7). (C) Milatuzumab (n = 9) significantly reduced the expression of CD62L (Wilcoxon test) on CD19+ B cells, especially on CD27- naïve B cells, whereas IgG1/IVIG (n = 8) did not modify this expression. The expression of the surface molecules CD44, β7-integrin, and CD62L on CD27+ memory B cells was not influenced by milatuzumab. *P ≤ 0.05; **P ≤ 0.01. IVIG, intravenous immunoglobulin; ns, not significant.

Similar articles

Cited by

References

    1. Stein R, Mattes MJ, Cardillo TM, Hansen HJ, Chang CH, Burton J, Govindan S, Goldenberg DM. CD74: a new candidate target for the immunotherapy of B-cell neoplasms. Clin Cancer Res. 2007;13:5556s–5563s. doi: 10.1158/1078-0432.CCR-07-1167. - DOI - PubMed
    1. Binsky I, Haran M, Starlets D, Gore Y, Lantner F, Harpaz N, Leng L, Goldenberg DM, Shvidel L, Berrebi A, Bucala R, Shachar I. IL-8 secreted in a macrophage migration-inhibitory factor- and CD74-dependent manner regulates B cell chronic lymphocytic leukemia survival. Proc Natl Acad Sci USA. 2007;104:13408–13413. doi: 10.1073/pnas.0701553104. - DOI - PMC - PubMed
    1. Ong GL, Goldenberg DM, Hansen HJ, Mattes MJ. Cell surface expression and metabolism of major histocompatibility complex class II invariant chain (CD74) by diverse cell lines. Immunology. 1999;98:296–302. doi: 10.1046/j.1365-2567.1999.00868.x. - DOI - PMC - PubMed
    1. Stein R, Qu Z, Cardillo TM, Chen S, Rosario A, Horak ID, Hansen HJ, Goldenberg DM. Antiproliferative activity of a humanized anti-CD74 monoclonal antibody, hLL1, on B-cell malignancies. Blood. 2004;104:3705–3711. doi: 10.1182/blood-2004-03-0890. - DOI - PubMed
    1. Lamb CA, Cresswell P. Assembly and transport properties of invariant chain trimers and HLA-DR-invariant chain complexes. J Immunol. 1992;148:3478–3482. - PubMed

Publication types

MeSH terms

Substances