Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Sep;228(1):35-45.
doi: 10.1002/ar.1092280107.

A novel mechanism of capillary growth in the rat pulmonary microcirculation

Affiliations

A novel mechanism of capillary growth in the rat pulmonary microcirculation

P H Burri et al. Anat Rec. 1990 Sep.

Abstract

Postnatally, the rat lung parenchyma undergoes impressive growth. Within four months of birth, lung volume and alveolar and capillary surface areas increase over 20-fold and capillary volume 35-fold. Investigation of methacrylate casts of the pulmonary microvasculature revealed that, with age, lung capillaries were not only growing in surface and volume but also increasing their network density. We proposed that the capillary bed grows by formation of slender intravascular tissue pillars and termed this type of growth intussusceptive microvascular growth (Caduff et al., Anat. Rec., 216:154-164, 1986). The aim of this investigation was to detect the presence and to analyze the ultrastructure of slender tissue posts (diameter 1-2.5 microns) extending across the capillary lumina in serial electron microscopic sections of rat lung parenchyma (age 44 days). Computer-assisted three-dimensional reconstruction of the capillary lumen confirmed that tissue posts were matching the holes previously observed in casts. Post ultrastructure varied with size from a simple area of interendothelial contact to tissue pillars with a core of interstitial tissue. Based on the changing morphology of the pillars, a hypothesis for their development can be proposed: phase I, creation of a zone of contact between opposite capillary walls (formation of an interendothelial bridge); phase II, reorganization of the intercellular junctions of the endothelium, with central perforation of the capillary layer; phase III, formation of an interstitial post core, with successive invasion by cytoplasmic extensions of myofibroblasts, pericytes, and finally interstitial fibers; and phase IV, growth of the slender pillar to a normal full size capillary mesh. These findings support the new concept of intussusceptive growth of the lung capillary system.

PubMed Disclaimer

LinkOut - more resources