Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Nov;73(5):958-63.
doi: 10.1097/00000542-199011000-00025.

Halothane cooling contractures of skinned mammalian muscle fibers

Affiliations

Halothane cooling contractures of skinned mammalian muscle fibers

R T Sudo et al. Anesthesiology. 1990 Nov.

Abstract

The effects of halothane or cooling on Ca2(+)-activated tensions and on the uptake and release of Ca2+ by the sarcoplasmic reticulum were investigated in chemically skinned fibers of the extensor digitorum longus muscle of adult rabbits. At 22 degrees C, halothane (greater than 0.46 mM) induced Ca2+ release from the SR of Ca2(+)-loaded skinned fibers that resulted in transient tensions. Higher concentrations of halothane (greater than 4.65 mM) reduced the steady-state accumulation of Ca2+ in the SR at 22 degrees C. Cooling (to less than 10 degrees C) elicited transient contractures (cooling-induced contractures [CC]) in Ca2(+)-loaded skinned fibers, despite the fact that the tensions elicited by adding Ca2+ to the bath were depressed at these low temperatures. The skinned fibers did not develop CCs at 12-16 degrees C. Halothane cooling contractures could be elicited at these temperatures by exposing the fibers to halothane concentrations that failed to elicit Ca2+ release at 22 degrees C. The halothane cooling contractures were blocked by procaine but not by lidocaine. It was concluded that these contractures resulted from a synergistic interaction between halothane and cooling that stimulates Ca2+ release from, and reduces Ca2+ uptake by, the sarcoplasmic reticulum.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources