Halothane cooling contractures of skinned mammalian muscle fibers
- PMID: 2240685
- DOI: 10.1097/00000542-199011000-00025
Halothane cooling contractures of skinned mammalian muscle fibers
Abstract
The effects of halothane or cooling on Ca2(+)-activated tensions and on the uptake and release of Ca2+ by the sarcoplasmic reticulum were investigated in chemically skinned fibers of the extensor digitorum longus muscle of adult rabbits. At 22 degrees C, halothane (greater than 0.46 mM) induced Ca2+ release from the SR of Ca2(+)-loaded skinned fibers that resulted in transient tensions. Higher concentrations of halothane (greater than 4.65 mM) reduced the steady-state accumulation of Ca2+ in the SR at 22 degrees C. Cooling (to less than 10 degrees C) elicited transient contractures (cooling-induced contractures [CC]) in Ca2(+)-loaded skinned fibers, despite the fact that the tensions elicited by adding Ca2+ to the bath were depressed at these low temperatures. The skinned fibers did not develop CCs at 12-16 degrees C. Halothane cooling contractures could be elicited at these temperatures by exposing the fibers to halothane concentrations that failed to elicit Ca2+ release at 22 degrees C. The halothane cooling contractures were blocked by procaine but not by lidocaine. It was concluded that these contractures resulted from a synergistic interaction between halothane and cooling that stimulates Ca2+ release from, and reduces Ca2+ uptake by, the sarcoplasmic reticulum.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
