Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;8(3):e1002565.
doi: 10.1371/journal.ppat.1002565. Epub 2012 Mar 8.

Significant association of KIR2DL3-HLA-C1 combination with cerebral malaria and implications for co-evolution of KIR and HLA

Affiliations

Significant association of KIR2DL3-HLA-C1 combination with cerebral malaria and implications for co-evolution of KIR and HLA

Kouyuki Hirayasu et al. PLoS Pathog. 2012.

Abstract

Cerebral malaria is a major, life-threatening complication of Plasmodium falciparum malaria, and has very high mortality rate. In murine malaria models, natural killer (NK) cell responses have been shown to play a crucial role in the pathogenesis of cerebral malaria. To investigate the role of NK cells in the developmental process of human cerebral malaria, we conducted a case-control study examining genotypes for killer immunoglobulin-like receptors (KIR) and their human leukocyte antigen (HLA) class I ligands in 477 malaria patients. We found that the combination of KIR2DL3 and its cognate HLA-C1 ligand was significantly associated with the development of cerebral malaria when compared with non-cerebral malaria (odds ratio 3.14, 95% confidence interval 1.52-6.48, P = 0.00079, corrected P = 0.02). In contrast, no other KIR-HLA pairs showed a significant association with cerebral malaria, suggesting that the NK cell repertoire shaped by the KIR2DL3-HLA-C1 interaction shows certain functional responses that facilitate development of cerebral malaria. Furthermore, the frequency of the KIR2DL3-HLA-C1 combination was found to be significantly lower in malaria high-endemic populations. These results suggest that natural selection has reduced the frequency of the KIR2DL3-HLA-C1 combination in malaria high-endemic populations because of the propensity of interaction between KIR2DL3 and C1 to favor development of cerebral malaria. Our findings provide one possible explanation for KIR-HLA co-evolution driven by a microbial pathogen, and its effect on the global distribution of malaria, KIR and HLA.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. KIR gene profiles in our study populations.
KIR genotyping was performed in 203 mild malaria (M), 165 non-cerebral severe malaria (NCS) and 109 cerebral malaria (C) patients in Thailand. A total of 38 KIR gene profiles were identified. The presence of KIR genes is indicated by grey shading. KIR gene profiles of the Thai population in Bangkok available from the Allele Frequency Net Database (population: Thailand Bangkok KIR pop 2) are shown.
Figure 2
Figure 2. Geographical distribution of P. falciparum malaria cases, and the location of the 29 populations.
Data for the 29 populations were obtained from an earlier report (Single et al., 2007). Plotted numbers correspond to the populations in Table 4.
Figure 3
Figure 3. Comparison of GF*GF indices for receptor-ligand pairs between P. falciparum malaria high- and low-endemic populations.
(A) KIR2DL3-HLA-C1, (B) KIR2DL1-HLA-C2, (C) KIR2DL2-HLA-C1 and (D) KIR3DL1-HLA-Bw4 receptor-ligand pairs were analysed. GF indicates gene frequency. The GF*GF index is defined as the product of two different gene frequencies. Vertical and horizontal axes indicate the GF*GF index of KIR-HLA receptor-ligand pair, and malaria endemicity for the 29 populations, respectively. P values were calculated using the Wilcoxon rank sum test. Data for the 29 populations were obtained from an earlier report (Single et al., 2007) .
Figure 4
Figure 4. Negative correlation between HLA-C1 and HLA-Bw4 gene frequencies in 29 populations.
Vertical and horizontal axes indicate HLA-Bw4 and HLA-C1 gene frequencies in the 29 populations, respectively. Pearson's product-moment correlation coefficient was applied to these data. Data for the 29 populations were obtained from an earlier report (Single et al., 2007) .
Figure 5
Figure 5. Empirical distribution of the Wilcoxon rank sum test statistics.
A total of 429,281 GF*GF indices per population were obtained from 1,051 genome-wide SNPs and compared between malaria high-endemic and low-endemic populations. Horizontal and vertical axes indicate Wilcoxon rank sum test statistics and frequencies, respectively. Data for the 29 populations were obtained from an earlier report (Single et al., 2007) .

References

    1. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature. 2005;434:214–217. - PMC - PubMed
    1. Marsh K, Forster D, Waruiru C, Mwangi I, Winstanley M, et al. Indicators of life-threatening malaria in African children. N Engl J Med. 1995;332:1399–1404. - PubMed
    1. Hansen DS, Siomos MA, Buckingham L, Scalzo AA, Schofield L. Regulation of murine cerebral malaria pathogenesis by CD1d-restricted NKT cells and the natural killer complex. Immunity. 2003;18:391–402. - PubMed
    1. Hansen DS, Bernard NJ, Nie CQ, Schofield L. NK cells stimulate recruitment of CXCR3+ T cells to the brain during Plasmodium berghei-mediated cerebral malaria. J Immunol. 2007;178:5779–5788. - PubMed
    1. Artavanis-Tsakonas K, Riley EM. Innate immune response to malaria: rapid induction of IFN-gamma from human NK cells by live Plasmodium falciparum-infected erythrocytes. J Immunol. 2002;169:2956–2963. - PubMed

Publication types

MeSH terms