Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Mar 14:11:39.
doi: 10.1186/1476-511X-11-39.

Changes in cholesterol metabolism-related gene expression in peripheral blood mononuclear cells from Alzheimer patients

Affiliations

Changes in cholesterol metabolism-related gene expression in peripheral blood mononuclear cells from Alzheimer patients

Antonella Mandas et al. Lipids Health Dis. .

Abstract

Background: Cholesterol homeostasis dysfunction has been reported to have role in the pathogenesis of Alzheimer disease (AD). Therefore, changes in cholesterol metabolism in blood components may help to develop new potential AD biomarkers. In this study changes in cholesterol metabolism-related gene expression genes were evaluated in peripheral blood mononuclear cells (PBMCs) from AD subjects, their first degree relatives (FDR) and two groups of age matched controls (C1 > 80 years, C2 < 60 years). The expression of three genes related to APP processing was also determined.

Results: Results showed significantly different behavior (P = 0.000) in the expression of all analyzed genes among the 4 groups. An inverse correlation emerged between the age of controls and the propensity of their PBMCs to express selected genes. Moreover, when gene expression was evaluated in PBMCs from AD patients and compared with that of PBMCs from healthy subjects of the same age, LDL-R and APP mRNAs were most abundant in AD as compared C1 whereas SREBP-2 and particularly nCEH were present at much lower mRNA levels in AD-PBMCs. This study describes for the first time a differential expression profile of cholesterol and APP related genes in PBMCs from AD patients and their FDR.

Conclusions: We suggest that the expressions of cholesterol homeostasis and APP processing related genes in PBMC could be proposed as possible biomarkers to evaluate AD risk. In addition, gene expression in PBMC could be also used for diagnosis and development of therapeutic strategies as well as for personalized prediction in clinical outcome of AD.

PubMed Disclaimer

Figures

Figure 1
Figure 1
ORO staining of cytoplasmic neutral lipids. Freshly isolated PBMCs were stained with ORO to demonstrate neutral lipids and counterstained with haematoxylin for nuclei. Cells were then examined by light microscopy and two different fields per sample were imaged. Red ORO intensity was measured in these two fields using NIH Image J software. Panel (a) shows representative images of ORO stained (on the left) and their corresponding ROI (on the right). Panel (b) shows quantization of red intensity expressed as the percentage of pixel intensity ± SD⁄ total area of each image. Analysis of variance (ANOVA) shows significant statistically differences among the four groups (P = 0.000).
Figure 2
Figure 2
Representative blots of mRNA levels of cholesterol metabolism and APP processing-related genes. Total mRNA was extracted from PBMCs of the selected groups. mRNA levels of indicated genes were then determined by RT-PCR using appropriate primer sets. Specific bands were detected after addition of a chemiluminescent substrate.
Figure 3
Figure 3
Densitometric analysis of mRNA levels of target genes normalized for the endogenous β-actin. mRNA levels were quantified by using NIH Image 1.63 program (Scion Image). Data values are represented as mean ± SD for each group. *Statistical analysis performed by using the one-way ANOVA test showed highly significant differences among the groups (P = 0.000 for all genes, with the exception of ACAT-1 for whom the significance was P = 0.006).
Figure 4
Figure 4
Schematic representation of the data collected from the mRNA quantifications. The schemes represent the expression level, cellular compartment and metabolic network position of genes linked to cholesterol homeostasis and to APP processing. The arrows (↑↓) denote the significant (P < 0.05) differences (increase or decrease, respectively) between the two indicated groups, obtained by applying a Bonferroni's multiple comparison test following ANOVA.

References

    1. Reddy PH, Beal MF. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease. Trends Mol Med. 2008;14:45–53. doi: 10.1016/j.molmed.2007.12.002. - DOI - PMC - PubMed
    1. Small DH. Network dysfunction in Alzheimer's disease: does synaptic scaling drive disease progression? Trends Mol Med. 2008;14:103–108. doi: 10.1016/j.molmed.2007.12.006. - DOI - PubMed
    1. Zhang YW, Xu H. Molecular and cellular mechanisms for Alzheimer's disease: understanding APP metabolism. Curr Mol Med. 2007;7:687–696. doi: 10.2174/156652407782564462. - DOI - PubMed
    1. Puglielli L, Tanzi RE, Kovacs DM. Alzheimer's disease: the cholesterol connection. Nat Neurosci. 2003;6:345–351. doi: 10.1038/nn0403-345. - DOI - PubMed
    1. Ghribi O, Larsen B, Schrag M, Herman MM. High cholesterol content in neurons increases BACE, β-amyloid, and phosphorylated tau levels in rabbit hippocampus. Exper Neurol. 2006;200:460–467. doi: 10.1016/j.expneurol.2006.03.019. - DOI - PubMed

Publication types