Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Aug;22(4):298-306.
doi: 10.1016/j.semcancer.2012.02.010. Epub 2012 Mar 6.

Tumor associated regulatory dendritic cells

Affiliations
Review

Tumor associated regulatory dendritic cells

Yang Ma et al. Semin Cancer Biol. 2012 Aug.

Abstract

Immune effector and regulatory cells in the tumor microenvironment are key factors in tumor development and progression as the pathogenesis of cancer vitally depends on the multifaceted interactions between various microenvironmental stimuli provided by tumor-associated immune cells. Immune regulatory cells participate in all stages of cancer development from the induction of genomic instability to the maintenance of intratumoral angiogenesis, proliferation and spreading of malignant cells, and formation of premetastatic niches in distal tissues. Dendritic cells in the tumor microenvironment serve as a double-edged sword and, in addition to initiating potent anti-tumor immune responses, may mediate genomic damage, support neovascularization, block anti-tumor immunity and stimulate cancerous cell growth and spreading. Regulatory dendritic cells in cancer may directly and indirectly maintain antigen-specific and non-specific T cell unresponsiveness by controlling T cell polarization, MDSC and Treg differentiation and activity, and affecting specific microenvironmental conditions in premalignant niches. Understanding the mechanisms involved in regulatory dendritic cell polarization and operation and revealing pharmacological means for harnessing these pathways will provide additional opportunities for modifying the tumor microenvironment and improving the efficacy of different therapeutic approaches to cancer.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–96. - PubMed
    1. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol. 2003;21:685–711. - PubMed
    1. Manicassamy S, Pulendran B. Dendritic cell control of tolerogenic responses. Immunol Rev. 2011;241:206–27. - PMC - PubMed
    1. Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 2002;23:445–9. - PubMed
    1. Mahnke K, Schmitt E, Bonifaz L, Enk AH, Jonuleit H. Immature, but not inactive: the tolerogenic function of immature dendritic cells. Immunol Cell Biol. 2002;80:477–83. - PubMed