Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Apr 12;55(7):3414-24.
doi: 10.1021/jm300094u. Epub 2012 Mar 29.

Application of the bicyclo[1.1.1]pentane motif as a nonclassical phenyl ring bioisostere in the design of a potent and orally active γ-secretase inhibitor

Affiliations

Application of the bicyclo[1.1.1]pentane motif as a nonclassical phenyl ring bioisostere in the design of a potent and orally active γ-secretase inhibitor

Antonia F Stepan et al. J Med Chem. .

Abstract

Replacement of the central, para-substituted fluorophenyl ring in the γ-secretase inhibitor 1 (BMS-708,163) with the bicyclo[1.1.1]pentane motif led to the discovery of compound 3, an equipotent enzyme inhibitor with significant improvements in passive permeability and aqueous solubility. The modified biopharmaceutical properties of 3 translated into excellent oral absorption characteristics (~4-fold ↑ C(max) and AUC values relative to 1) in a mouse model of γ-secretase inhibition. In addition, SAR studies into other fluorophenyl replacements indicate the intrinsic advantages of the bicyclo[1.1.1]pentane moiety over conventional phenyl ring replacements with respect to achieving an optimal balance of properties (e.g., γ-secretase inhibition, aqueous solubility/permeability, in vitro metabolic stability). Overall, this work enhances the scope of the [1.1.1]-bicycle beyond that of a mere "spacer" unit and presents a compelling case for its broader application as a phenyl group replacement in scenarios where the aromatic ring count impacts physicochemical parameters and overall drug-likeness.

PubMed Disclaimer

MeSH terms

Substances