Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Jul-Aug;4(4):389-98.
doi: 10.1002/wnan.1167. Epub 2012 Mar 15.

Magnetic resonance chemical exchange saturation transfer imaging and nanotechnology

Affiliations
Review

Magnetic resonance chemical exchange saturation transfer imaging and nanotechnology

Patrick M Winter. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012 Jul-Aug.

Abstract

Chemical exchange saturation transfer (CEST) agents and paramagnetic CEST (PARACEST) agents display bound water signals that exchange protons with the bulk water. CEST magnetic resonance imaging (MRI) relies on exchangeable protons that resonate at a chemical shift that is distinguishable from the bulk water signal. In some cases, paramagnetic chelates are utilized to shift the bound water frequency further away from the bulk water. Radiofrequency prepulses applied at the appropriate frequency can saturate the exchangeable protons, which transfer into the bulk water pool and lead to reduced equilibrium magnetization. Therefore, CEST and PARACEST agents allow the image contrast to be switched 'on' and 'off' by simply changing the pulse sequence parameters. One of the main limitations with this approach is the inherent insensitivity of MRI to CEST and PARACEST agents. Nanoscale carriers have been developed to improve the limit of detection for these agents, demonstrating the feasibility of in vivo molecular or cellular MRI based on CEST or PARACEST contrast. These carriers have been based on a number of different nanoparticle constructs, such as liposomes, dendrimers, polymers, adenovirus particles, and perfluorocarbon nanoparticles. The unique MRI properties of CEST and PARACEST nanoparticle systems have spawned research into an array of potential medical applications.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources