Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Aug;40(8):1666-78.
doi: 10.1007/s10439-012-0542-3. Epub 2012 Mar 17.

Automated estimation of collagen fibre dispersion in the dermis and its contribution to the anisotropic behaviour of skin

Affiliations

Automated estimation of collagen fibre dispersion in the dermis and its contribution to the anisotropic behaviour of skin

Aisling Ní Annaidh et al. Ann Biomed Eng. 2012 Aug.

Abstract

Collagen fibres play an important role in the mechanical behaviour of many soft tissues. Modelling of such tissues now often incorporates a collagen fibre distribution. However, the availability of accurate structural data has so far lagged behind the progress of anisotropic constitutive modelling. Here, an automated process is developed to identify the orientation of collagen fibres using inexpensive and relatively simple techniques. The method uses established histological techniques and an algorithm implemented in the MATLAB image processing toolbox. It takes an average of 15 s to evaluate one image, compared to several hours if assessed visually. The technique was applied to histological sections of human skin with different Langer line orientations and a definite correlation between the orientation of Langer lines and the preferred orientation of collagen fibres in the dermis (p < 0.001, R(2) = 0.95) was observed. The structural parameters of the Gasser-Ogden-Holzapfel (GOH) model were all successfully evaluated. The mean dispersion factor for the dermis was κ = 0.1404±0.0028. The constitutive parameters μ, k(1) and k(2) were evaluated through physically-based, least squares curve-fitting of experimental test data. The values found for μ, k(1) and k(2) were 0.2014 MPa, 243.6 and 0.1327, respectively. Finally, the above model was implemented in ABAQUS/Standard and a finite element (FE) computation was performed of uniaxial extension tests on human skin. It is expected that the results of this study will assist those wishing to model skin, and that the algorithm described will be of benefit to those who wish to evaluate the collagen dispersion of other soft tissues.

PubMed Disclaimer

Publication types

LinkOut - more resources