Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011;1(2):135-45.
Epub 2011 Sep 8.

Progress in myeloma stem cells

Affiliations

Progress in myeloma stem cells

Richard Dela Cruz et al. Am J Blood Res. 2011.

Abstract

Multiple myeloma (MM) is the second most common hematologic malignancy in the United States and affects about 4 in 100,000 Americans. Even though much progress has been made in MM therapy, MM remains an incurable disease for the vast majority of patients. The existence of MM stem cell is considered one of the major causes of MM drug-resistance, leading to relapse. This highlights the importance and urgency of developing approaches to target MM stem cells. However, very little is known about the molecular characteristics of the MM stem cells, which makes it difficult to target MM stem cells therapeutically. Evidence of the existence of a myeloma stem cell has been provided by Matsui et al. showing that the CD138- and CD20+ fraction, which is a minor population of the MM cells, has a greater clonogenic potential and has the phenotype of a memory B-cell (CD19+, CD27+). In this review, we report recent progress of cell surface markers in cancer stem cells, especially in myeloma and the molecular mechanisms related to drug resistance and myeloma disease progression.

Keywords: Cancer stem cell; and cell signaling; drug resistance; multiple myeloma.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Chng W, Glebov O, Bergsagel P, Kuehl W. Genetic events in the pathogenesis of multiple myeloma. Best Pract Res Clin Haematol. 2007;20:571–596. - PMC - PubMed
    1. Kuehl WM, Bergsagel PL. Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer. 2002;2:175–187. - PubMed
    1. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S, Epstein J, Yaccoby S, Sawyer J, Burington B, Anaissie E, Hollmig K, Pineda-Roman M, Tricot G, van Rhee F, Walker R, Zangari M, Crowley J, Barlogie B, Shaughnessy JD., Jr The molecular classification of multiple myeloma. Blood. 2006;108:2020–2028. - PMC - PubMed
    1. Shaughnessy JD, Jr, Zhan F, Burington BE, Huang Y, Colla S, Hanamura I, Stewart JP, Kordsmeier B, Randolph C, Williams DR, Xiao Y, Xu H, Epstein J, Anaissie E, Krishna SG, Cottler-Fox M, Hollmig K, Mohiuddin A, Pineda-Roman M, Tricot G, van Rhee F, Sawyer J, Alsayed Y, Walker R, Zangari M, Crowley J, Barlogie B. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood. 2007;109:2276–2284. - PubMed
    1. Kirschstein RL, Skirboll LR, editors. Bethesda: National Institutes of Health; 2001. Stem cells: scientific progress and future research directions.

LinkOut - more resources