Broadband local field potentials correlate with spontaneous fluctuations in functional magnetic resonance imaging signals in the rat somatosensory cortex under isoflurane anesthesia
- PMID: 22433008
- PMCID: PMC3621847
- DOI: 10.1089/brain.2011.0014
Broadband local field potentials correlate with spontaneous fluctuations in functional magnetic resonance imaging signals in the rat somatosensory cortex under isoflurane anesthesia
Abstract
Resting-state functional magnetic resonance imaging (fMRI) is widely used for exploring spontaneous brain activity and large-scale networks; however, the neural processes underlying the observed resting-state fMRI signals are not fully understood. To investigate the neural correlates of spontaneous low-frequency fMRI fluctuations and functional connectivity, we developed a rat model of simultaneous fMRI and multiple-site intracortical neural recordings. This allowed a direct comparison to be made between the spontaneous signals and interhemispheric connectivity measured with the two modalities. Results show that low-frequency blood oxygen level-dependent (BOLD) fluctuations (<0.1 Hz) correlate significantly with slow power modulations (<0.1 Hz) of local field potentials (LFPs) in a broad frequency range (1-100 Hz) under isoflurane anesthesia (1%-1.8%). Peak correlation occurred between neural and hemodynamic activity when the BOLD signal was delayed by ~4 sec relative to the LFP signal. The spatial location and extent of correlation was highly reproducible across studies, with the maximum correlation localized to a small area surrounding the site of microelectrode recording and to the homologous area in the contralateral hemisphere for most rats. Interhemispheric connectivity was calculated using BOLD correlation and band-limited LFP (1-4, 4-8, 8-14, 14-25, 25-40, and 40-100 Hz) coherence. Significant coherence was observed for the slow power changes of all LFP frequency bands as well as in the low-frequency BOLD data. A preliminary investigation of the effect of anesthesia on interhemispheric connectivity indicates that coherence in the high-frequency LFP bands declines with increasing doses of isoflurane, whereas coherence in the low-frequency LFP bands and the BOLD signal increases. These findings suggest that resting-state fMRI signals might be a reflection of broadband LFP power modulation, at least in isoflurane-anesthetized rats.
Figures









References
-
- Allen PJ. Josephs O. Turner R. A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage. 2000;12:230–239. - PubMed
-
- Biswal B. Hudetz AG. Yetkin FZ. Haughton VM. Hyde JS. Hypercapnia reversibly suppresses low-frequency fluctuations in the human motor cortex during rest using echo-planar MRI. J Cereb Blood Flow Metab. 1997;17:301–308. - PubMed
-
- Biswal B. Yetkin FZ. Haughton VM. Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34:537–541. - PubMed
-
- Fox MD. Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8:700–711. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical