Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jun;184(6):548-55.
doi: 10.1055/s-0031-1299376. Epub 2012 Mar 20.

Clinical pilot study for the automatic segmentation and recognition of abdominal adipose tissue compartments from MRI data

Affiliations

Clinical pilot study for the automatic segmentation and recognition of abdominal adipose tissue compartments from MRI data

P B Noël et al. Rofo. 2012 Jun.

Abstract

Purpose: In the diagnosis and risk assessment of obesity, both the amount and distribution of adipose tissue compartments are critical factors. We present a hybrid method for the quantitative measurement of human body fat compartments.

Materials and methods: MRI imaging was performed on a 1.5 T scanner. In a pre-processing step, the images were corrected for bias field inhomogeneity. For segmentation and recognition a hybrid algorithm was developed to automatically differentiate between different adipose tissue compartments. The presented algorithm is designed with a combination of shape and intensity-based techniques. To incorporate the presented algorithm into the clinical routine, we developed a graphical user interface. Results from our methods were compared with the known volume of an adipose tissue phantom. To evaluate our method, we analyzed 40 clinical MRI scans of the abdominal region.

Results: Relatively low segmentation errors were found for subcutaneous adipose tissue (3.56 %) and visceral adipose tissue (0.29 %) in phantom studies. The clinical results indicated high correlations between the distribution of adipose tissue compartments and obesity.

Conclusion: We present an approach that rapidly identifies and quantifies adipose tissue depots of interest. With this method examination and analysis can be performed in a clinically feasible timeframe.

PubMed Disclaimer

LinkOut - more resources