Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Mar;246(1):168-82.
doi: 10.1111/j.1600-065X.2012.01104.x.

IκB kinase regulation of the TPL-2/ERK MAPK pathway

Affiliations
Review

IκB kinase regulation of the TPL-2/ERK MAPK pathway

Thorsten Gantke et al. Immunol Rev. 2012 Mar.

Abstract

Nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) activation play central roles in the induction of gene expression in innate immune cells following pathogen recognition. TPL-2 (tumor progression locus 2) is the MAP 3-kinase component of an ERK-1/2 (extracellular signal-regulated kinase 1/2) MAPK pathway activated by Toll-like receptor and tumor necrosis factor receptor family stimulation. In this review, we discuss results obtained from our laboratory and others that show that TPL-2 signaling function is directly controlled by the inhibitor of NF-κB (IκB) kinase (IKK) complex. Significantly, this means that IKK controls both NF-κB and ERK activation. TPL-2 is stoichiometrically complexed with the NF-κB inhibitory protein, NF-κB1 p105, and the ubiquitin-binding protein ABIN-2, both of which are required to maintain TPL-2 protein stability. Binding to p105 also prevents TPL-2 from phosphorylating MEK (MAPK/ERK kinase), its downstream target. Agonist stimulation releases TPL-2 from p105-inhibition by IKK-mediated phosphorylation of p105, which triggers degradation of p105 by the proteasome. This facilitates TPL-2 phosphorylation of MEK, in addition to liberating p105-associated Rel subunits to translocate into the nucleus. We also examine evidence that TPL-2 is critical for the induction of inflammation and may play a role in development and/or progression of certain types of cancer. Finally, we consider the potential of TPL-2 as an anti-inflammatory drug target for treatment of certain types of inflammatory disease and cancer.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources