Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 May;23(5):781-4.
doi: 10.1681/ASN.2011101019. Epub 2012 Mar 22.

Vasculature and kidney complications in sickle cell disease

Affiliations

Vasculature and kidney complications in sickle cell disease

Karl A Nath et al. J Am Soc Nephrol. 2012 May.

Abstract

Recent developments in sickle cell disease include the concept of a vasculopathic state and the classification of sickle cell disease into a hemolysis-endothelial dysfunction phenotype or a viscosity-vasoocclusion phenotype. The hemolysis-endothelial dysfunction phenotype largely reflects deficiency of or resistance to nitric oxide. In addition to discussing these areas, we suggest that the hemolysis-endothelial dysfunction phenotype also reflects the instability of sickle hemoglobin, the release of heme, and the induction of heme oxygenase-1. From these perspectives the renal complications of sickle cell disease are discussed and classified.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Modified hemolysis-endothelial dysfunction phenotype and proposed renal pathophysiology in human SCD. Hemolysis in human SCD leads to NO scavenging by plasma hemoglobin (HbSS) and increased amounts of heme because of the instability of sickle hemoglobin. Heme is cytotoxic, thereby injuring glomerular cells and causing proteinuria and CKD. Induction of heme oxygenase-1, through the generation of carbon monoxide and other actions, induces vasodilation, and thus promotes hyperfiltration. The minus sign signifies that induction of heme oxygenase-1 can mitigate the adverse effects of heme by degrading heme and other cytoprotective effects of heme oxygenase-1.

Similar articles

Cited by

References

    1. Herrick JB: Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. 1910. Yale J Biol Med 74: 179–184, 2001 - PMC - PubMed
    1. Hebbel RP, Osarogiagbon R, Kaul D: The endothelial biology of sickle cell disease: Inflammation and a chronic vasculopathy. Microcirculation 11: 129–151, 2004 - PubMed
    1. Nath KA, Katusic ZS, Gladwin MT: The perfusion paradox and vascular instability in sickle cell disease. Microcirculation 11: 179–193, 2004 - PubMed
    1. Kato GJ, Gladwin MT, Steinberg MH: Deconstructing sickle cell disease: reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev 21: 37–47, 2007 - PMC - PubMed
    1. Nath KA, Shah V, Haggard JJ, Croatt AJ, Smith LA, Hebbel RP, Katusic ZS: Mechanisms of vascular instability in a transgenic mouse model of sickle cell disease. Am J Physiol Regul Integr Comp Physiol 279: R1949–R1955, 2000 - PubMed

Publication types

Substances