Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Apr 19;116(15):4524-34.
doi: 10.1021/jp2118373. Epub 2012 Apr 6.

Optimizing solute-water van der Waals interactions to reproduce solvation free energies

Affiliations
Free article

Optimizing solute-water van der Waals interactions to reproduce solvation free energies

Paul S Nerenberg et al. J Phys Chem B. .
Free article

Abstract

An accurate representation of solute-water interactions is necessary for molecular dynamics simulations of biomolecules that reside in aqueous environments. Modern force fields and advanced water models describe solute-solute and water-water interactions reasonably accurately but have known shortcomings in describing solute-water interactions, demonstrated by the large differences between calculated and experimental solvation free energies across a range of peptide and drug chemistries. In this work, we introduce a method for optimizing solute-water van der Waals interactions to reproduce experimental solvation free energy data and apply it to the optimization of a fixed charge force field (AMBER ff99SB/GAFF) and advanced water model (TIP4P-Ew). We show that, with these optimizations, the combination of AMBER ff99SB/GAFF and TIP4P-Ew is able to reproduce the solvation free energies of a variety of biologically relevant small molecules to within 1.0 k(B)T. We further validate these optimizations by examining the aggregation propensities of dipeptide-water solutions, the conformational preferences of short disordered peptides, and the native state stability and dynamics of a folded protein.

PubMed Disclaimer

Publication types