Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Apr;16(4):355-63.
doi: 10.1517/14728222.2012.671811. Epub 2012 Mar 27.

Targeting RhoA/ROCK pathway in pulmonary arterial hypertension

Affiliations
Review

Targeting RhoA/ROCK pathway in pulmonary arterial hypertension

Sabina Antonela Antoniu. Expert Opin Ther Targets. 2012 Apr.

Abstract

Introduction: Pulmonary arterial hypertension (PAH) is a rare disease with a complex pathogenesis. It is often associated with an increased vascular resistance, whilst in the more advanced stages there is a remodelling of the vascular walls. PAH has an intricate involvement of various signaling pathways, including the ras homolog family member A (RhoA)-Rho kinase (ROCK) axis. Currently, available therapies are not always able to significantly slow PAH progression. Therefore, newer approaches are needed.

Areas covered: In this review, areas covered include the role of the RhoA/ROCK in PAH pathogenesis and the plausibility of its therapeutic targeting. Furthermore, various inhibitory compounds are discussed, including Fasudil and SB-772077-B.

Expert opinion: Currently, specific RhoA/ROCK inhibition is the most promising therapeutic approach for PAH. Research has shown that it suppresses both the components of this axis and the upstream upregulating mediators. An inhaled RhoA/ROCK inhibitor may be a successful future therapy; however, further clinical trials are needed to support this approach.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources