Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jun;56(6):2873-8.
doi: 10.1128/AAC.06170-11. Epub 2012 Mar 26.

Broad phenotypic cross-resistance to elvitegravir in HIV-infected patients failing on raltegravir-containing regimens

Collaborators, Affiliations

Broad phenotypic cross-resistance to elvitegravir in HIV-infected patients failing on raltegravir-containing regimens

Carolina Garrido et al. Antimicrob Agents Chemother. 2012 Jun.

Abstract

The failure of raltegravir (RAL) is generally associated with the selection of mutations at integrase position Y143, Q148, or N155. However, a relatively high proportion of failures occurs in the absence of these changes. Here, we report the phenotypic susceptibilities to RAL and elvitegravir (EVG) for a large group of HIV-infected patients failing on RAL-containing regimens. Plasma from HIV-infected individuals failing on RAL-containing regimens underwent genotypic and phenotypic resistance testing (Antivirogram v2.5.01; Virco). A control group of patients failing on other regimens was similarly tested. Sixty-one samples were analyzed, 40 of which belonged to patients failing on RAL-containing regimens. Full RAL susceptibility was found in 20/21 controls, while susceptibility to EVG was diminished in 8 subjects, with a median fold change (FC) of 2.5 (interquartile range [IQR], 2.1 to 3.1). Fourteen samples from patients with RAL failures showed diminished RAL susceptibility, with a median FC of 38.5 (IQR, 10.8 to 103.2). Primary integrase resistance mutations were found in 11 of these samples, displaying a median FC of 68.5 (IQR, 23.5 to 134.3). The remaining 3 samples showed a median FC of 2.5 (IQR, 2 to 2.7). EVG susceptibility was diminished in 19/40 samples from patients with RAL failures (median FC, 7.71 [IQR, 2.48 to 99.93]). Cross-resistance between RAL and EVG was high (R(2) = 0.8; P < 0.001), with drug susceptibility being more frequently reduced for EVG than for RAL (44.3% versus 24.6%; P = 0.035). Susceptibility to RAL and EVG is rarely affected in the absence of primary integrase resistance mutations. There is broad cross-resistance between RAL and EVG, which should preclude their sequential use. Resistance to EVG seems to be more frequent and might be more influenced by integrase variability.

PubMed Disclaimer

References

    1. Ceccherini-Silberstein F, et al. 2010. Specific HIV-1 integrase polymorphisms change their prevalence in untreated versus antiretroviral-treated HIV-1-infected patients, all naive to integrase inhibitors. J. Antimicrob. Chemother. 65:2305–2318 - PubMed
    1. Cooper DA, et al. 2008. Subgroup and resistance analyses of raltegravir for resistant HIV-1 infection. N. Engl. J. Med. 359:355–365 - PubMed
    1. DeGruttola V, et al. 2000. The relation between baseline HIV drug resistance and response to antiretroviral therapy: re-analysis of retrospective and prospective studies using a standardized data analysis plan. Antivir. Ther. 5:41–48 - PubMed
    1. DeJesus E, et al. 2006. Antiviral activity, pharmacokinetics, and dose response of the HIV-1 integrase inhibitor GS-9137 (JTK-303) in treatment-naive and treatment-experienced patients. J. Acquir. Immune Defic. Syndr. 43:1–5 - PubMed
    1. Delelis O, et al. 2010. Impact of Y143 HIV-1 integrase mutations on resistance to raltegravir in vitro and in vivo. Antimicrob. Agents Chemother. 54:491–501 - PMC - PubMed

Associated data