Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;30(2):439-59.
doi: 10.3233/JAD-2012-111862.

CB1 agonist ACEA protects neurons and reduces the cognitive impairment of AβPP/PS1 mice

Affiliations
Free article

CB1 agonist ACEA protects neurons and reduces the cognitive impairment of AβPP/PS1 mice

Ester Aso et al. J Alzheimers Dis. 2012.
Free article

Erratum in

  • J Alzheimers Dis. 2012;31(3):679-80

Abstract

The present study shows that chronic administration of the cannabinoid receptor type 1 (CB1) receptor agonist arachidonyl-2-chloroethylamide (ACEA) at pre-symptomatic or at early symptomatic stages, at a non-amnesic dose, reduces the cognitive impairment observed in double AβPP(swe)/PS1(1dE9) transgenic mice from 6 months of age onwards. ACEA has no effect on amyloid-β (Aβ) production, aggregation, or clearance. However, ACEA reduces the cytotoxic effect of Aβ42 oligomers in primary cultures of cortical neurons, and reverses Aβ-induced dephosphorylation of glycogen synthase kinase-3β (GSK3β) in vitro and in vivo. Reduced activity of GSK3β in ACEA-treated mice is further supported by the reduced amount of phospho-tau (Thr181) in neuritic processes around Aβ plaques. In addition, ACEA-treated mice show decreased astroglial response in the vicinity of Aβ plaques and decreased expression of the pro-inflammatory cytokine interferon-γ in astrocytes when compared with age-matched vehicle-treated transgenic mice. Our present results show a beneficial effect of ACEA at both the neuronal, mediated at least in part by GSK3β inhibition, and glial levels, resulting in a reduction of reactive astrocytes and lower expression of interferon-γ. As a consequence, targeting the CB1 receptor could offer a versatile approach for the treatment of Alzheimer's disease.

PubMed Disclaimer

Publication types

MeSH terms