Methods to detect Ca(2+) in living cells
- PMID: 22453937
- DOI: 10.1007/978-94-007-2888-2_2
Methods to detect Ca(2+) in living cells
Abstract
Measurements of free cytosolic Ca(2+) concentration ([Ca(2+)](i)) or free Ca(2+) concentration in cellular organelles have become more routine. The primary reason for this is the availability of membrane permeant forms of Ca(2+) indicators that can easily enter cells. In this chapter, the properties required of an ideal Ca(2+) indicator are identified and the advantages and disadvantages of available Ca(2+) indicators are pointed out. The pitfalls associated with usage of Ca(2+) indicators together with the clear advantages of ratiometric over non-ratiometric indicators are discussed. The excitation of Ca(2+) indicators and detection of the emitted fluorescence light require dedicated equipment; epifluorescence or confocal microscopes are most frequently used for this purpose and the advantages and disadvantages of these are discussed. Calibration experiments are required to translate changes in the fluorescence of Ca(2+) indicators into real [Ca(2+)](i) changes, but this procedure is non-trivial and potential sources of error are identified. Future developments in the field of Ca(2+) detection are discussed.
Similar articles
-
Measuring Ca2+ in Living Cells.Adv Exp Med Biol. 2020;1131:7-26. doi: 10.1007/978-3-030-12457-1_2. Adv Exp Med Biol. 2020. PMID: 31646505 Review.
-
Confocal imaging of subcellular Ca2+ concentrations using a dual-excitation ratiometric indicator based on green fluorescent protein.Sci STKE. 2002 Mar 26;2002(125):pl4. doi: 10.1126/stke.2002.125.pl4. Sci STKE. 2002. PMID: 11917155
-
Confocal and multiphoton imaging of intracellular Ca(2+).Methods Cell Biol. 2010;99:225-61. doi: 10.1016/B978-0-12-374841-6.00009-8. Methods Cell Biol. 2010. PMID: 21035689
-
Quantitative Ratiometric Ca2+ Imaging to Assess Cell Viability.Methods Mol Biol. 2017;1601:171-193. doi: 10.1007/978-1-4939-6960-9_14. Methods Mol Biol. 2017. PMID: 28470526
-
Relationship between [Ca2+] changes in nucleus and cytosol.Cell Calcium. 1994 Oct;16(4):239-46. doi: 10.1016/0143-4160(94)90087-6. Cell Calcium. 1994. PMID: 7820843 Review.
Cited by
-
Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres.J Physiol. 2014 May 1;592(9):2003-12. doi: 10.1113/jphysiol.2014.271528. Epub 2014 Mar 3. J Physiol. 2014. PMID: 24591577 Free PMC article.
-
Mechanical isolation, and measurement of force and myoplasmic free [Ca2+] in fully intact single skeletal muscle fibers.Nat Protoc. 2017 Sep;12(9):1763-1776. doi: 10.1038/nprot.2017.056. Epub 2017 Aug 3. Nat Protoc. 2017. PMID: 28771237
-
Calcium response of KCl-excited populations of ventricular myocytes from the European sea bass (Dicentrarchus labrax): a promising approach to integrate cell-to-cell heterogeneity in studying the cellular basis of fish cardiac performance.J Comp Physiol B. 2015 Oct;185(7):755-65. doi: 10.1007/s00360-015-0924-6. Epub 2015 Jul 24. J Comp Physiol B. 2015. PMID: 26205950
-
Impaired Ca(2+) release contributes to muscle weakness in a rat model of critical illness myopathy.Crit Care. 2016 Aug 10;20(1):254. doi: 10.1186/s13054-016-1417-z. Crit Care. 2016. PMID: 27510990 Free PMC article.
-
The excitation-contraction coupling mechanism in skeletal muscle.Biophys Rev. 2014 Mar;6(1):133-160. doi: 10.1007/s12551-013-0135-x. Epub 2014 Jan 24. Biophys Rev. 2014. PMID: 28509964 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous