Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012:740:569-601.
doi: 10.1007/978-94-007-2888-2_26.

Combined computational and experimental approaches to understanding the Ca(2+) regulatory network in neurons

Affiliations
Review

Combined computational and experimental approaches to understanding the Ca(2+) regulatory network in neurons

Elena E Saftenku et al. Adv Exp Med Biol. 2012.

Abstract

Ca(2+) is a ubiquitous signaling ion that regulates a variety of neuronal functions by binding to and altering the state of effector proteins. Spatial relationships and temporal dynamics of Ca(2+) elevations determine many cellular responses of neurons to chemical and electrical stimulation. There is a wealth of information regarding the properties and distribution of Ca(2+) channels, pumps, exchangers, and buffers that participate in Ca(2+) regulation. At the same time, new imaging techniques permit characterization of evoked Ca(2+) signals with increasing spatial and temporal resolution. However, understanding the mechanistic link between functional properties of Ca(2+) handling proteins and the stimulus-evoked Ca(2+) signals they orchestrate requires consideration of the way Ca(2+) handling mechanisms operate together as a system in native cells. A wide array of biophysical modeling approaches is available for studying this problem and can be used in a variety of ways. Models can be useful to explain the behavior of complex systems, to evaluate the role of individual Ca(2+) handling mechanisms, to extract valuable parameters, and to generate predictions that can be validated experimentally. In this review, we discuss recent advances in understanding the underlying mechanisms of Ca(2+) signaling in neurons via mathematical modeling. We emphasize the value of developing realistic models based on experimentally validated descriptions of Ca(2+) transport and buffering that can be tested and refined through new experiments to develop increasingly accurate biophysical descriptions of Ca(2+) signaling in neurons.

PubMed Disclaimer

Publication types

LinkOut - more resources