Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jul;95(1):91-9.
doi: 10.1007/s00253-012-3993-4. Epub 2012 Mar 28.

Efficient production of (R)-o-chloromandelic acid by deracemization of o-chloromandelonitrile with a new nitrilase mined from Labrenzia aggregata

Affiliations

Efficient production of (R)-o-chloromandelic acid by deracemization of o-chloromandelonitrile with a new nitrilase mined from Labrenzia aggregata

Chen-Sheng Zhang et al. Appl Microbiol Biotechnol. 2012 Jul.

Abstract

(R)-o-Chloromandelic acid is the key precursor for the synthesis of Clopidogrel®, a best-selling cardiovascular drug. Although nitrilases are often used as an efficient tool in the production of α-hydroxy acids, there is no practical nitrilase specifically developed for (R)-o-chloromandelic acid. In this work, a new nitrilase from Labrenzia aggregata (LaN) was discovered for the first time by genomic data mining, which hydrolyzed o-chloromandelonitrile with high enantioselectivity, yielding (R)-o-chloromandelic acid in 96.5% ee. The LaN was overexpressed in Escherichia coli BL21 (DE3), purified, and its catalytic properties were studied. When o-chloromandelonitrile was used as the substrate, the V(max) and K(m) of LaN were 2.53 μmol min⁻¹ mg⁻¹ protein and 0.39 mM, respectively, indicating its high catalytic efficiency. In addition, a study of substrate spectrum showed that LaN prefers to hydrolyze arylacetonitriles. To relieve the substrate inhibition and to improve the productivity of LaN, a biphasic system of toluene-water (1:9, v/v) was adopted, in which o-chloromandelonitrile of 300 mM (apparent concentration, based on total volume) could be transformed by LaN in 8 h, giving an isolated yield of 94.5%. The development of LaN makes it possible to produce (R)-o-chloromandelic acid by deracemizing o-chloromandelonitrile with good ee value and high substrate concentration.

PubMed Disclaimer

Publication types

LinkOut - more resources