Injectable systems and implantable conduits for peripheral nerve repair
- PMID: 22456722
- DOI: 10.1088/1748-6041/7/2/024102
Injectable systems and implantable conduits for peripheral nerve repair
Abstract
Acute sensory problems following peripheral nerve injury include pain and loss of sensation. Approximately 360,000 people in the United States suffer from upper extremity paralytic syndromes every year. Restoration of sufficient functional recovery after long-gap peripheral nerve damage remains a clinical challenge. Potential nerve repair therapies have increased in the past decade as the field of tissue engineering expands. The following review describes the use of biomaterials in nerve tissue engineering. Namely, the use of both synthetic and natural biomaterials, including non-degradable and degradable nerve grafts, is addressed. The enhancement of axonal regeneration can be achieved by further modification of the nerve guides. These approaches include injectable hydrogel fillers, controlled drug delivery systems, and cell incorporation. Hydrogels are a class of liquid-gel biomaterials with high water content. Injectable and gelling hydrogels can serve as growth factor delivery vehicles and cell carriers for tissue engineering applications. While natural hydrogels and polymers are suitable for short gap nerve repair, the use of polymers for relatively long gaps remains a clinical challenge.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous