Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 May;73(3):333-7.
doi: 10.4103/0250-474X.93512.

New 6-Bromo-2-Methyl-3-(Substituted Phenyl)-(3H)-Quinazolin-4-Ones with Antimicrobial and Antiinflammatory Activities

Affiliations

New 6-Bromo-2-Methyl-3-(Substituted Phenyl)-(3H)-Quinazolin-4-Ones with Antimicrobial and Antiinflammatory Activities

Y Murti et al. Indian J Pharm Sci. 2011 May.

Abstract

New quinazolin-4-one derivatives, 6-bromo-2-methyl-3-(substituted phenyl)-(3H)-quinazolin-4-one, were synthesized and evaluated for antimicrobial and antiinflammatory activities. The structures attributed to synthesized compounds 1-8 were supported by the results of elemental analysis as well as by the UV, IR and (1)H NMR spectral data. Investigation of antimicrobial activity was performed using cup-plate agar diffusion method against Bacillus subtilis, Staphylococcus aureus and Pseudomonas aeruginosa and Candida albicans, Aspergillus niger and Curvularia lunata. Antiinflammatory activity was evaluated using the carrageenan-induced paw oedema test in rats. The results showed that compounds 2b, 2c, 2d, 2g and 2h exhibited significant antibacterial and antifungal activity comparable to standard drugs and compounds 2b and 2c showed good antiinflammatory activity comparable to ibuprofen.

Keywords: 5-bromoanthranilic acid; Antibacterial; antifungal; antiinflammatory; quinazolin-4-one.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1
Synthesis of 6-bromo-2-methyl-3-(substituted phenyl)-(3H)-quinazolin-4-ones

References

    1. Lawson EC, Kinney WA, Costanzo MJ, Hoekstra WJ, Kauffman JA, Luci DK, et al. Structure-function study of quinazolinone-based vitronectin receptor (αVβ3) antagonists: Computer-assisted analysis of ligand-receptor interactions. Lett Drug Desi Disc. 2004;1:14–8.
    1. Padia JK, Field M, Hinton J, Meecham K, Pablo J, Pinnock R, et al. Novel nonpeptide CCK-B antagonists: Design and development of quinazolinone derivatives as potent, selective, and orally active CCKB antagonists. J Med Chem. 1998;41:1042–9. - PubMed
    1. Kulcsár G, Kálai T, Õsz E, Sár CP, Jekõ J, Sümegi B, et al. Synthesis and study of new 4-quinazolinone inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP) ARKIVOC. 2003;5:121–31.
    1. Alagarsamy V, Murugesan S, Dhanabal K, Murugan M, Clercq E De. AntiHIV, antibacterial and antifungal activities of some novel 2-methyl-3-(substituted methylamino)-(3H)-quinazolin-4-ones. Indian J Pharm Sci. 2007;69:304–7.
    1. Alagarsamy V, Muthukumar V, Pavalarani N, Vasanthanathan P, Revathi R. Synthesis, Analgesic and Anti-inflammatory Activities of Some Novel 2,3-Disubstituted Quinazolin-4(3H)-ones. Biol Pharm Bull. 2003;26:557–61. - PubMed

LinkOut - more resources