Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1990 Sep;69(3):937-44.
doi: 10.1152/jappl.1990.69.3.937.

Alveolar slope and dead space of He and SF6 in dogs: comparison of airway and venous loading

Affiliations
Comparative Study

Alveolar slope and dead space of He and SF6 in dogs: comparison of airway and venous loading

M Meyer et al. J Appl Physiol (1985). 1990 Sep.

Abstract

Series (Fowler) dead space (VD) and slope of the alveolar plateau of two inert gases (He and SF6) with similar blood-gas partition coefficients (approximately 0.01) but different diffusivities were analyzed in 10 anesthetized paralyzed mechanically ventilated dogs (mean body wt 20 kg). Single-breath constant-flow expirograms were simultaneously recorded in two conditions: 1) after equilibration of lung gas with the inert gases at tracer concentrations [airway loading (AL)] and 2) during steady-state elimination of the inert gases continuously introduced into venous blood by a membrane oxygenator and partial arteriovenous bypass [venous loading (VL)]. VD was consistently larger for SF6 than for He, but there was no difference between AL and VL. The relative alveolar slope, defined as increment of partial pressure per increment of expired volume and normalized to mixed expired-inspired partial pressure difference, was larger by a factor of two in VL than in AL for both He and SF6. The He-to-SF6 ratio of relative alveolar slope was generally smaller than unity in both VL and AL. Whereas unequal ventilation-volume distribution combined with sequential emptying of parallel lung regions appears to be responsible for the sloping alveolar plateau during AL, the steeper slope during VL is attributed to the combined effects of continuing gas exchange and ventilation-perfusion inequality coupled with sequential emptying. The differences between He and SF6 point at the contributing role of diffusion-dependent mechanisms in intrapulmonary gas mixing.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources