Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Nov 15;265(32):19560-7.

Electron transfer from menaquinol to fumarate. Fumarate reductase anchor polypeptide mutants of Escherichia coli

Affiliations
  • PMID: 2246242
Free article

Electron transfer from menaquinol to fumarate. Fumarate reductase anchor polypeptide mutants of Escherichia coli

D J Westenberg et al. J Biol Chem. .
Free article

Abstract

Fumarate reductase (FRD) of Escherichia coli is a four-subunit membrane-bound complex that is synthesized during anaerobic growth when fumarate is available as a terminal oxidant. The two subunits that comprise the catalytic domain, FrdA and FrdB, are anchored to the cytoplasmic membrane surface by two small hydrophobic polypeptides, FrdC and FrdD, which are also required for the enzyme to interact with quinone. To better define the individual roles of the FrdC and FrdD polypeptides in FRD complex formation and quinone binding, we selectively mutagenized the frdCD genes. Frd- strains were identified by their inability to grow on restrictive media, and the resulting mutant FRD complexes were isolated and biochemically characterized. The majority of the frdC and frdD mutations were identified as single base deletions that caused premature termination in either FrdC or FrdD and resulted in the loss of one or more of the predicted transmembrane helices. Two additional frdC mutants were characterized that contained single base changes resulting in single amino acid substitutions. All mutant enzyme complexes were incapable of oxidizing the physiological electron donor, menaquinol-6, in the presence of fumarate. Additionally, the ability of the mutant complexes to oxidize reduced benzyl viologen or reduce the ubiquinone analogue 2,3-dimethoxy-5-methyl-6-pentyl-1,4-benzoquinone and phenazine methosulfate with succinate as electron donor were also affected but to varying degrees. The separation of oxidative and reductive activities with quinones suggests there are two quinone binding sites in the fumarate reductase complex and that electron transfer occurs in two le- steps carried out at these separate sites.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources