Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jun;73(2):133-41.
doi: 10.1016/j.neures.2012.03.007. Epub 2012 Mar 23.

Principal Fourier component of motion stimulus dominates the initial optokinetic response in mice

Affiliations

Principal Fourier component of motion stimulus dominates the initial optokinetic response in mice

Yuko Sugita et al. Neurosci Res. 2012 Jun.

Abstract

Optokinetic responses (OKRs) are reflexive eye movements elicited by a moving visual pattern, and have been recognized in a variety of species. Several brainstem and cortical structures are known to be implicated in the generation of OKRs in primates, while the OKRs of afoveate mammals have been posited to be dominated by subcortical structures. To understand the subcortical mechanism underlying OKRs, the initial OKRs to horizontal quarter-wavelength steps applied to vertical grating patterns were studied in adult C57BL/6J mice under the monocular viewing conditions. The initial OKRs to sinusoidal gratings showed directional asymmetry with temporal-to-nasal predominance, a common characteristic of afoveate mammals that uses the subcortical structures to elicit OKRs. We then examined whether the OKRs of afoveate mammals are driven by the same visual features of the moving images as those in primates. The OKRs in mice were elicited by using the missing fundamental (mf) stimuli and its variants that had been used to understand the mechanism(s) underlying the cortical control of eye movements in primates. We obtained the results indicating that the OKRs of mice are driven by the principal Fourier component of moving visual image as in primates despite the differences in neural circuitries.

PubMed Disclaimer

Publication types

LinkOut - more resources