Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Mar;54(1):7-14.
doi: 10.2334/josnusd.54.7.

Butyric acid induces apoptosis in both human monocytes and lymphocytes equivalently

Affiliations
Free article

Butyric acid induces apoptosis in both human monocytes and lymphocytes equivalently

Kazumasa Abe. J Oral Sci. 2012 Mar.
Free article

Abstract

Short-chain fatty acids (SCFAs) are metabolites from anaerobic periodontopathic bacteria that induce apoptosis in immune cells such as lymphocytes, monocytes and macrophages. However, it remains unclear if SCFAs from pathogens induce apoptosis in monocytes/macrophages similarly with lymphocytes. This study investigated whether SCFAs-induced apoptosis is equal among the immunoregulatory cells. Cell apoptosis of the employed human cells was evaluated after treatment with culture supernatants from various periodontopathic bacteria or sodium butyrate. Apoptosis and viability were determined by detection of DNA fragmentation and using an MTS assay kit, respectively. Porphyromonas gingivalis and Fusobacterium nucleatum culture filtrates strongly induced apoptosis whereas Prevotella nigrescens and Prevotella intermedia culture filtrates failed to induce apoptosis in the THP-1 and U937 human monocyte and macrophage cell lines. Healthy gingival fibroblasts and oral epithelial cells were resistant to all the culture filtrates. Gas-liquid chromatography detected butyric acid in P. gingivalis (21.0-34.0 mM) and F. nucleatum (36.0 mM) in culture filtrates, whereas, only trace levels were seen in P. nigrescens and P. intermedia. These results suggest that butyric acid produced by periodontopathic bacteria severely damages immunoregulatory cells in a consistent manner and, likewise, could be involved in mediating periodontal chronic inflammation.

PubMed Disclaimer

Publication types

MeSH terms