Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Sep;95(6):1567-78.
doi: 10.1007/s00253-012-4007-2. Epub 2012 Apr 1.

Identification of nicotine biotransformation intermediates by Agrobacterium tumefaciens strain S33 suggests a novel nicotine degradation pathway

Affiliations

Identification of nicotine biotransformation intermediates by Agrobacterium tumefaciens strain S33 suggests a novel nicotine degradation pathway

Shuning Wang et al. Appl Microbiol Biotechnol. 2012 Sep.

Abstract

Nicotine, a major alkaloid in tobacco plants and the main toxic chemical in tobacco wastes, can be transformed by bacteria into hydroxylated-pyridine intermediates, which are important precursors for the chemical synthesis of valuable drugs and insecticides. Such biotransformation could be a useful approach to utilize tobacco and its wastes. In this study, we explored nicotine degradation by a recently isolated Agrobacterium tumefaciens S33 by identifying the intermediates during its growth on nicotine and during transformation of nicotine with its resting cells. Five hydroxylated-pyridine intermediates were detected through multiple approaches, including GC-HR-MS, HPLC, and ESI-Q-TOF MS analyses. Surprisingly, these identified intermediates suggest that strain S33 employs a novel pathway that is different from the two characterized pathways described in Arthrobacter and Pseudomonas. Based on these findings, we propose that strain S33 is able to transform nicotine to 6-hydroxy-pseudooxynicotine first via the pyridine pathway through 6-hydroxy-L-nicotine and 6-hydroxy-N-methylmyosmine, and then, it turns to the pyrrolidine pathway with the formation of 6-hydroxy-3-succinoylpyridine and 2,5-dihydroxypyridine. The activities of the key enzymes, nicotine dehydrogenase, 6-hydroxy-L-nicotine oxidase, and 6-hydroxy-3-succinoylpyridine hydroxylase, were demonstrated in the cell extract of strain S33 and by partially enriched enzymes. Moreover, the cell extract could transform 6-hydroxy-pseudooxynicotine into 6-hydroxy-3-succinoylpyridine by coupling with 6-hydroxy-L-nicotine oxidation reaction by 6-hydroxy-L-nicotine oxidase. These results indicated that strain S33 can transform nicotine into renewable hydroxylated-pyridine intermediates by the special pathway, in which at least three intermediates, 6-hydroxy-L-nicotine, 6-hydroxy-3-succinoylpyridine, and 2,5-dihydroxypyridine, have potential to be further chemically modified into useful compounds.

PubMed Disclaimer

Publication types

MeSH terms