Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Mar 21;18(11):1141-53.
doi: 10.3748/wjg.v18.i11.1141.

Genetically modified mouse models for the study of nonalcoholic fatty liver disease

Review

Genetically modified mouse models for the study of nonalcoholic fatty liver disease

Perumal Nagarajan et al. World J Gastroenterol. .

Abstract

Nonalcoholic fatty liver disease (NAFLD) is associated with obesity, insulin resistance, and type 2 diabetes. NAFLD represents a large spectrum of diseases ranging from (1) fatty liver (hepatic steatosis); (2) steatosis with inflammation and necrosis; to (3) cirrhosis. The animal models to study NAFLD/nonalcoholic steatohepatitis (NASH) are extremely useful, as there are still many events to be elucidated in the pathology of NASH. The study of the established animal models has provided many clues in the pathogenesis of steatosis and steatohepatitis, but these remain incompletely understood. The different mouse models can be classified in two large groups. The first one includes genetically modified (transgenic or knockout) mice that spontaneously develop liver disease, and the second one includes mice that acquire the disease after dietary or pharmacological manipulation. Although the molecular mechanism leading to the development of hepatic steatosis in the pathogenesis of NAFLD is complex, genetically modified animal models may be a key for the treatment of NAFLD. Ideal animal models for NASH should closely resemble the pathological characteristics observed in humans. To date, no single animal model has encompassed the full spectrum of human disease progression, but they can imitate particular characteristics of human disease. Therefore, it is important that the researchers choose the appropriate animal model. This review discusses various genetically modified animal models developed and used in research on NAFLD.

Keywords: Animal models; Knockout; Nonalcoholic fatty liver disease; Steatohepatitis; Steatosis.

PubMed Disclaimer

References

    1. Brix AE, Elgavish A, Nagy TR, Gower BA, Rhead WJ, Wood PA. Evaluation of liver fatty acid oxidation in the leptin-deficient obese mouse. Mol Genet Metab. 2002;75:219–226. - PubMed
    1. Yang SQ, Lin HZ, Lane MD, Clemens M, Diehl AM. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci USA. 1997;94:2557–2562. - PMC - PubMed
    1. Faggioni R, Fantuzzi G, Gabay C, Moser A, Dinarello CA, Feingold KR, Grunfeld C. Leptin deficiency enhances sensitivity to endotoxin-induced lethality. Am J Physiol. 1999;276:R136–R142. - PubMed
    1. Koteish A, Diehl AM. Animal models of steatosis. Semin Liver Dis. 2001;21:89–104. - PubMed
    1. Chavin KD, Yang S, Lin HZ, Chatham J, Chacko VP, Hoek JB, Walajtys-Rode E, Rashid A, Chen CH, Huang CC, et al. Obesity induces expression of uncoupling protein-2 in hepatocytes and promotes liver ATP depletion. J Biol Chem. 1999;274:5692–5700. - PubMed