Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jun;91(6):911-20.
doi: 10.1189/jlb.0911485. Epub 2012 Apr 2.

Effects of palmitoylethanolamide on intestinal injury and inflammation caused by ischemia-reperfusion in mice

Affiliations

Effects of palmitoylethanolamide on intestinal injury and inflammation caused by ischemia-reperfusion in mice

Rosanna Di Paola et al. J Leukoc Biol. 2012 Jun.

Abstract

Our primary aim in this study was to test the hypothesis that PEA, a member of the fatty acid ethanolamide family and an endogenous PPAR-α ligand, exerts anti-inflammatory effects on SAO shock, causing a severe form of circulatory shock and enhanced formation of ROS. SAO shock was induced by clamping the superior mesenteric artery and the celiac trunk, resulting in a total occlusion of these arteries for 30 min. After this period of occlusion, the clamps were removed. In this study, we demonstrated that the administration of PEA, 5 min before reperfusion, significantly reduced all of the parameters involved during inflammation, such as proinflammatory cytokine production (TNF-α, IL-1β), adhesion molecules (ICAM-1, P-selectin) expression, NF-κB expression, and apoptosis (Bax, Bcl-2, TUNEL assay) activation. In addition, to study whether the protective action of PEA on SAO shock is also related to the activation of PPAR-α, we have investigated the effect of PEA in PPAR-α KO mice subjected to SAO shock. Our study clearly demonstrates that PEA significantly attenuated the degree of intestinal injury and inflammation caused by I/R injury. Moreover, the positive effects of PEA were at least in part dependent on the PPAR-α pathway. The results clearly indicate that PEA exerts an anti-inflammatory effect, also in a SAO shock model, which could imply a future use of PEA in the treatment of I/R shock.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources