Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(3):e33161.
doi: 10.1371/journal.pone.0033161. Epub 2012 Mar 21.

Induction of protective CD4+ T cell-mediated immunity by a Leishmania peptide delivered in recombinant influenza viruses

Affiliations

Induction of protective CD4+ T cell-mediated immunity by a Leishmania peptide delivered in recombinant influenza viruses

Katherine Kedzierska et al. PLoS One. 2012.

Abstract

The available evidence suggests that protective immunity to Leishmania is achieved by priming the CD4(+) Th1 response. Therefore, we utilised a reverse genetics strategy to generate influenza A viruses to deliver an immunogenic Leishmania peptide. The single, immunodominant Leishmania-specific LACK(158-173) CD4(+) peptide was engineered into the neuraminidase stalk of H1N1 and H3N2 influenza A viruses. These recombinant viruses were used to vaccinate susceptible BALB/c mice to determine whether the resultant LACK(158-173)-specific CD4(+) T cell responses protected against live L. major infection. We show that vaccination with influenza-LACK(158-173) triggers LACK(158-173)-specific Th1-biased CD4(+) T cell responses within an appropriate cytokine milieu (IFN-γ, IL-12), essential for the magnitude and quality of the Th1 response. A single intraperitoneal exposure (non-replicative route of immunisation) to recombinant influenza delivers immunogenic peptides, leading to a marked reduction (2-4 log) in parasite burden, albeit without reduction in lesion size. This correlated with increased numbers of IFN-γ-producing CD4(+) T cells in vaccinated mice compared to controls. Importantly, the subsequent prime-boost approach with a serologically distinct strain of influenza (H1N1->H3N2) expressing LACK(158-173) led to a marked reduction in both lesion size and parasite burdens in vaccination trials. This protection correlated with high levels of IFN-γ producing cells in the spleen, which were maintained for 6 weeks post-challenge indicating the longevity of this protective effector response. Thus, these experiments show that Leishmania-derived peptides delivered in the context of recombinant influenza viruses are immunogenic in vivo, and warrant investigation of similar vaccine strategies to generate parasite-specific immunity.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Cytokine production by LACK158–173-specific CD4+ T cells following influenza-LACK158–173 priming.
A) Ex vivo IFN-γ production by LACK158–173-specific CD4+ T cells. Cells were obtained from spleens of naïve control mice or PR8-LACKins and PR8-LACKrep mice on day 10 following priming. Cells were cultured in the absence or presence of LACK158–173 peptide for 12 h and assessed for IFN-γ production by ICS. B) In vitro IFN-γ production by LACK158–173-specific CD4+ T cells. Cells were obtained from spleens of naïve control mice or PR8-LACKins and PR8-LACKrep mice on day 10 following priming. Cells were cultured in the absence or presence of LACK158–173 peptide for 72 h followed by re-stimulation with PMA and ionomycin, and assessed for IFN-γ production by ICS. Numbers in the upper right quadrant refer to percentage of CD4+ T cells producing IFN-γ (raw data). Cells have been gated on CD4+ CD44+, for statistical analyses no peptide (panel A) and isotype control (panel B) values were subtracted from the raw values. Representative data from one mouse are shown (n = 3, n refers to number of mice, *p = 0.004, **p = 0.0002, ***p = 0.006).
Figure 2
Figure 2. Cytokine profile of LACK158–175 specific CD4+ T cells.
Cells were obtained from spleens of naïve control mice or PR8-LACKins and PR8-LACKrep mice on day 10 following priming. Cells were cultured in the presence of LACK158–173 peptide for 72 h, and culture supernatants were analysed for cytokine production by capture ELISA. Mean, pooled data ± SD are plotted (n = 3, n refers to number of mice) *p = 0.001, **p = 0.003, ***p = 0.009, ****p = 0.01, ND – below detection level.
Figure 3
Figure 3. Protective efficacy of influenza-LACK158–173 vaccination.
A) Lesion scores in mice vaccinated with LACKins and PR 8 vector controls (pooled data from 2 independent experiments). B) Parasite burdens in mice vaccinated with LACKins (n = 5), PR 8 vector control (n = 5), *p = 0.02. C) Cytokine production following challenge infection. Spleens and dNL from vaccinated and control mice were assessed by ex vivo ICS IFN-γ (*p = 0.006). Mean, pooled data from 2 independent experiments ± SEM are plotted (n = 6 for wk 2, n = 5 for wk 6, n refers to number of mice). Cells have been gated on CD4+ CD44+.
Figure 4
Figure 4. Boosting with serologically distinct recombinant virus increases protective potency of the effector response.
A) Prime-boost and challenge strategy. B) Lesion scores in mice primed with PR8-LACKins and boosted with X31-LACKins (PR8/X31); and PBS controls. C) Parasite burdens in PR8/X31 vaccinated mice and PBS controls (n = 3 for wk 2 and 6, n = 5 for wk 11), *p = 0.009. D) Cytokine production following challenge. Spleens and dNL from vaccinated and control mice were assessed by ex vivo ICS for IFN-γ production. Mean, pooled data ± SEM are plotted (n = 3 for non-challenged mice, n = 5 for wk 2 and 6); *p = 0.02, **p = 0.03, ***p = 0.005, ****p = 0.001, #p = 0.02, ##p = 0.002, ###p = 0.03. Cells have been gated on CD4+ CD44+.
Figure 5
Figure 5. Boosting with serologically distinct recombinant virus increases protective potency and longevity of IFN-γ response.
A) Prime-boost with delayed challenge strategy. B) Lesion scores in mice primed with PR8-LACKins and boosted with X31-LACKins (PR8/X31); and wild type PR8/X31 virus controls. C) Parasite burdens in PR8/X31 vaccinated mice and virus controls (n = 5 each time point, except n = 4 for wk 10 controls), *p = 0.049. D) Cytokine production following challenge. Spleens and dNL from vaccinated and control mice were assessed by ex vivo ICS for IFN-γ production. Mean, pooled data ± SEM are plotted (n = 3 for non-challenged mice, n = 5 for wk 2 and 6; *p = 0.02, **p = 0.01). Cells have been gated on CD4+ CD44+.
Figure 6
Figure 6. Cytokine production profile of Leishmania specific T cells following long-term prime-boost immunisation.
Cells were obtained from spleens and dLN of immunised and control mice on wk 2 following challenge. Cells were cultured in vitro in the presence of SLA for 72 h, and culture supernatants were analysed for cytokine production. IFN-γ (Th1) levels in splenocytes culture supernatants, and Th2-type cytokine production in dLN on wk 2 post-infection measured by Bio-Plex Pro Mouse Cytokine assay. Mean, pooled data ± SD are plotted (n = 5).

Similar articles

Cited by

References

    1. Handman E. Cell biology of Leishmania. Adv Parasitol. 1999;44:1–39. - PubMed
    1. Rose K, Curtis J, Baldwin T, Mathis A, Kumar B, et al. Cutaneous leishmaniasis in red kangaroos: isolation and characterisation of the causative organisms. Int J Parasitol. 2004;34:655–664. - PubMed
    1. Bern C, Maguire JH, Alvar J. Complexities of assessing the disease burden attributable to leishmaniasis. PLoS Negl Trop Dis. 2008;2:e313. - PMC - PubMed
    1. World Health Organization. WHO Initiative for Vaccine Research. 2008;23 Available: http://www.who.int/vaccine_research/diseases/soa_parasitic/en/index3.html. Accessed 2012 Feb.
    1. Patz JA, Graczyk TK, Geller N, Vittor AY. Effects of environmental change on emerging parasitic diseases. Int J Parasitol. 2000;30:1395–1405. - PubMed

Publication types

MeSH terms