Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Nov;32(6):707-11.

Manganese induced changes in growth, chlorophyll content and antioxidants activity in seedlings of broad bean (Vicia faba L.)

Affiliations
  • PMID: 22471205

Manganese induced changes in growth, chlorophyll content and antioxidants activity in seedlings of broad bean (Vicia faba L.)

Shashi K Arya et al. J Environ Biol. 2011 Nov.

Abstract

The effect of manganese (Mn) on broad bean (Vicia faba L.) was studied with regard to growth, Mn accumulation in root and shoot, chlorophyll, proline content and peroxidase activity. Seeds were treated with Mn (10, 20, 40, 80,120,160 microM) and grown hydroponically up to 15 days. Manganese level in both root and shoot increased progressively in response to increasing concentration and it was high in roots (13 fold) overthe shoots (8 fold). The reductions in root (52%) and shoot (62.92%) development were evident for the maximum Mn concentration (160 microM). The chlorophyll amount gradually declined with increasing Mn concentrations and attained its maximum (42%) at 160 microM. By contrast, the guaiacol peroxidase activity was high (71%) along with the accompanying rise in proline content (75%) in shoots of the highest Mn concentration (160 microM). However, there was about 2 fold increase in total glutathione content at 40 microM than the basal level and further declined to 21.65 microg g(-1) fresh wt. at 160 microM Mn. The alterations in overall reflected Mn concentration-dependent changes in the parameters studied. The results suggest thatthe plant Vicia faba L. copes with Mn exposure through enhanced production of antioxidants.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources