A diet based on multiple functional concepts improves cardiometabolic risk parameters in healthy subjects
- PMID: 22472183
- PMCID: PMC3361470
- DOI: 10.1186/1743-7075-9-29
A diet based on multiple functional concepts improves cardiometabolic risk parameters in healthy subjects
Abstract
Background: Different foods can modulate cardiometabolic risk factors in persons already affected by metabolic alterations. The objective of this study was to assess, in healthy overweight individuals, the impact of a diet combining multiple functional concepts on risk markers associated with cardiometabolic diseases (CMD).
Methods: Fourty-four healthy women and men (50-73 y.o, BMI 25-33, fasting glycemia ≤ 6.1 mmol/L) participated in a randomized crossover intervention comparing a multifunctional (active) diet (AD) with a control diet (CD) devoid of the "active" components. Each diet was consumed during 4 wk with a 4 wk washout period. AD included the following functional concepts: low glycemic impact meals, antioxidant-rich foods, oily fish as source of long-chain omega-3 fatty acids, viscous dietary fibers, soybean and whole barley kernel products, almonds, stanols and a probiotic strain (Lactobacillus plantarum Heal19/DSM15313).
Results: Although the aim was to improve metabolic markers without promoting body weight loss, minor weight reductions were observed with both diets (0.9-1.8 ± 0.2%; P < 0.05). CD did not modify the metabolic variables measured. AD promoted significant changes in total serum cholesterol (-26 ± 1% vs baseline; P < 0.0001), LDL-cholesterol (-34 ± 1%; P < 0.0001), triglycerides (-19 ± 3%; P = 0.0056), LDL/HDL (-27 ± 2%; P < 0.0001), apoB/apoA1 (-10 ± 2%; P < 0.0001), HbA1c (-2 ± 0.4%; P = 0.0013), hs-CRP (-29 ± 9%; P = 0.0497) and systolic blood pressure (-8 ± 1%¸ P = 0.0123). The differences remained significant after adjustment for weight change. After AD, the Framingham cardiovascular risk estimate was 30 ± 4% (P < 0.0001) lower and the Reynolds cardiovascular risk score, which considers CRP values, decreased by 35 ± 3% (P < 0.0001).
Conclusion: The improved biomarker levels recorded in healthy individuals following the multifunctional regime suggest preventive potential of this dietary approach against CMD.
References
- 
    - WHO. The Global Burden of Disease: 2004 Update. Gèneve, Switzerland: World Health Organization; 2008.
 
- 
    - Feldeisen SE, Tucker KL. Nutritional strategies in the prevention and treatment of metabolic syndrome. Appl Physiol Nutr Metab. 2007;32:42–60. - PubMed
 
- 
    - Lloyd-Jones DM, Hong Y, Labarthe D, Mozaffarian D, Appel LJ, Van Horn L, Greenlund K, Daniels S, Nichol G, Tomaselli GF, Arnett DK, Fonarow C, Ho M, Lauer MS, Masoudi FA, Robertson RM, Roger V, Schwamm LH, Sorlie P, Yancy CW, Rosamond WD. Defining and setting national goals for cardiovascular health promotion and disease reduction: The American Heart Association's strategic impact goal through 2020 and beyond. Circulation. 2010;121:586–613. doi: 10.1161/CIRCULATIONAHA.109.192703. - DOI - PubMed
 
- 
    - Jenkins DJA, Kendall CWC, Faulkner D, Vidgen E, Trautwein EA, Parker TL, Marchie A, Koumbridis G, Lapsley KG, Josse R, Leiter LA, Connelly PW. A dietary portfolio approach to cholesterol reduction: Combined effects of plant sterols, vegetable proteins, and viscous fibers in hypercholesterolemia. Metabolism. 2002;51:1596–1604. doi: 10.1053/meta.2002.35578. - DOI - PubMed
 
- 
    - Jenkins DJA, Kendall CWC, Marchie A, Faulkner DA, Josse AR, Wong JM, de Souza R, Emam A, Parker TL, Vidgen E, Trautwein EA, Lapsley KG, Josse RG, Leiter LA, Singer W, Connelly PW. Direct comparison of a dietary portfolio of cholesterol-lowering foods with a statin in hypercholesterolemic participants. Am J Clin Nutr. 2005;81:380–387. - PubMed
 
LinkOut - more resources
- Full Text Sources
- Other Literature Sources
- Medical
- Research Materials
- Miscellaneous
 
        