ADAM10 mediates vascular injury induced by Staphylococcus aureus α-hemolysin
- PMID: 22474035
- PMCID: PMC3392186
- DOI: 10.1093/infdis/jis192
ADAM10 mediates vascular injury induced by Staphylococcus aureus α-hemolysin
Abstract
Staphylococcus aureus is a leading cause of bacteremia and sepsis. The interaction of S. aureus with the endothelium is central to bloodstream infection pathophysiology yet remains ill-understood. We show herein that staphylococcal α-hemolysin, a pore-forming cytotoxin, is required for full virulence in a murine sepsis model. The α-hemolysin binding to its receptor A-disintegrin and metalloprotease 10 (ADAM10) upregulates the receptor's metalloprotease activity on endothelial cells, causing vascular endothelial-cadherin cleavage and concomitant loss of endothelial barrier function. These cellular injuries and sepsis severity can be mitigated by ADAM10 inhibition. This study therefore provides mechanistic insight into toxin-mediated endothelial injury and suggests new therapeutic approaches for staphylococcal sepsis.
Figures
References
-
- Klevens RM, Morrison MA, Nadle J, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA. 2007;298:1763–71. - PubMed
-
- Lemichez E, Lecuit M, Nassif X, Bourdoulous S. Breaking the wall: targeting of the endothelium by pathogenic bacteria. Nat Rev Microbiol. 2010;8:93–104. - PubMed
-
- Menzies BE, Kourteva I. Staphylococcus aureus alpha-toxin induces apoptosis in endothelial cells. FEMS Immunol Med Microbiol. 2000;29:39–45. - PubMed
-
- Hocke AC, Temmesfeld-Wollbrueck B, Schmeck B, et al. Perturbation of endothelial junction proteins by Staphylococcus aureus alpha-toxin: inhibition of endothelial gap formation by adrenomedullin. Histochem Cell Biol. 2006;126:305–16. - PubMed
