Central and peripheral circadian clocks in mammals
- PMID: 22483041
- PMCID: PMC3710582
- DOI: 10.1146/annurev-neuro-060909-153128
Central and peripheral circadian clocks in mammals
Abstract
The circadian system of mammals is composed of a hierarchy of oscillators that function at the cellular, tissue, and systems levels. A common molecular mechanism underlies the cell-autonomous circadian oscillator throughout the body, yet this clock system is adapted to different functional contexts. In the central suprachiasmatic nucleus (SCN) of the hypothalamus, a coupled population of neuronal circadian oscillators acts as a master pacemaker for the organism to drive rhythms in activity and rest, feeding, body temperature, and hormones. Coupling within the SCN network confers robustness to the SCN pacemaker, which in turn provides stability to the overall temporal architecture of the organism. Throughout the majority of the cells in the body, cell-autonomous circadian clocks are intimately enmeshed within metabolic pathways. Thus, an emerging view for the adaptive significance of circadian clocks is their fundamental role in orchestrating metabolism.
Figures
References
-
- Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol. 2002;12:540–550. - PubMed
-
- Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008;134:317–328. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
